| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islindf5.f |
|- F = ( R freeLMod I ) |
| 2 |
|
islindf5.b |
|- B = ( Base ` F ) |
| 3 |
|
islindf5.c |
|- C = ( Base ` T ) |
| 4 |
|
islindf5.v |
|- .x. = ( .s ` T ) |
| 5 |
|
islindf5.e |
|- E = ( x e. B |-> ( T gsum ( x oF .x. A ) ) ) |
| 6 |
|
islindf5.t |
|- ( ph -> T e. LMod ) |
| 7 |
|
islindf5.i |
|- ( ph -> I e. X ) |
| 8 |
|
islindf5.r |
|- ( ph -> R = ( Scalar ` T ) ) |
| 9 |
|
islindf5.a |
|- ( ph -> A : I --> C ) |
| 10 |
|
eqid |
|- ( Scalar ` T ) = ( Scalar ` T ) |
| 11 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
| 12 |
|
eqid |
|- ( 0g ` ( Scalar ` T ) ) = ( 0g ` ( Scalar ` T ) ) |
| 13 |
|
eqid |
|- ( Base ` ( ( Scalar ` T ) freeLMod I ) ) = ( Base ` ( ( Scalar ` T ) freeLMod I ) ) |
| 14 |
3 10 4 11 12 13
|
islindf4 |
|- ( ( T e. LMod /\ I e. X /\ A : I --> C ) -> ( A LIndF T <-> A. y e. ( Base ` ( ( Scalar ` T ) freeLMod I ) ) ( ( T gsum ( y oF .x. A ) ) = ( 0g ` T ) -> y = ( I X. { ( 0g ` ( Scalar ` T ) ) } ) ) ) ) |
| 15 |
6 7 9 14
|
syl3anc |
|- ( ph -> ( A LIndF T <-> A. y e. ( Base ` ( ( Scalar ` T ) freeLMod I ) ) ( ( T gsum ( y oF .x. A ) ) = ( 0g ` T ) -> y = ( I X. { ( 0g ` ( Scalar ` T ) ) } ) ) ) ) |
| 16 |
|
oveq1 |
|- ( x = y -> ( x oF .x. A ) = ( y oF .x. A ) ) |
| 17 |
16
|
oveq2d |
|- ( x = y -> ( T gsum ( x oF .x. A ) ) = ( T gsum ( y oF .x. A ) ) ) |
| 18 |
|
ovex |
|- ( T gsum ( y oF .x. A ) ) e. _V |
| 19 |
17 5 18
|
fvmpt |
|- ( y e. B -> ( E ` y ) = ( T gsum ( y oF .x. A ) ) ) |
| 20 |
19
|
adantl |
|- ( ( ph /\ y e. B ) -> ( E ` y ) = ( T gsum ( y oF .x. A ) ) ) |
| 21 |
20
|
eqeq1d |
|- ( ( ph /\ y e. B ) -> ( ( E ` y ) = ( 0g ` T ) <-> ( T gsum ( y oF .x. A ) ) = ( 0g ` T ) ) ) |
| 22 |
10
|
lmodring |
|- ( T e. LMod -> ( Scalar ` T ) e. Ring ) |
| 23 |
6 22
|
syl |
|- ( ph -> ( Scalar ` T ) e. Ring ) |
| 24 |
8 23
|
eqeltrd |
|- ( ph -> R e. Ring ) |
| 25 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 26 |
1 25
|
frlm0 |
|- ( ( R e. Ring /\ I e. X ) -> ( I X. { ( 0g ` R ) } ) = ( 0g ` F ) ) |
| 27 |
24 7 26
|
syl2anc |
|- ( ph -> ( I X. { ( 0g ` R ) } ) = ( 0g ` F ) ) |
| 28 |
8
|
fveq2d |
|- ( ph -> ( 0g ` R ) = ( 0g ` ( Scalar ` T ) ) ) |
| 29 |
28
|
sneqd |
|- ( ph -> { ( 0g ` R ) } = { ( 0g ` ( Scalar ` T ) ) } ) |
| 30 |
29
|
xpeq2d |
|- ( ph -> ( I X. { ( 0g ` R ) } ) = ( I X. { ( 0g ` ( Scalar ` T ) ) } ) ) |
| 31 |
27 30
|
eqtr3d |
|- ( ph -> ( 0g ` F ) = ( I X. { ( 0g ` ( Scalar ` T ) ) } ) ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ y e. B ) -> ( 0g ` F ) = ( I X. { ( 0g ` ( Scalar ` T ) ) } ) ) |
| 33 |
32
|
eqeq2d |
|- ( ( ph /\ y e. B ) -> ( y = ( 0g ` F ) <-> y = ( I X. { ( 0g ` ( Scalar ` T ) ) } ) ) ) |
| 34 |
21 33
|
imbi12d |
|- ( ( ph /\ y e. B ) -> ( ( ( E ` y ) = ( 0g ` T ) -> y = ( 0g ` F ) ) <-> ( ( T gsum ( y oF .x. A ) ) = ( 0g ` T ) -> y = ( I X. { ( 0g ` ( Scalar ` T ) ) } ) ) ) ) |
| 35 |
34
|
ralbidva |
|- ( ph -> ( A. y e. B ( ( E ` y ) = ( 0g ` T ) -> y = ( 0g ` F ) ) <-> A. y e. B ( ( T gsum ( y oF .x. A ) ) = ( 0g ` T ) -> y = ( I X. { ( 0g ` ( Scalar ` T ) ) } ) ) ) ) |
| 36 |
8
|
eqcomd |
|- ( ph -> ( Scalar ` T ) = R ) |
| 37 |
36
|
oveq1d |
|- ( ph -> ( ( Scalar ` T ) freeLMod I ) = ( R freeLMod I ) ) |
| 38 |
37 1
|
eqtr4di |
|- ( ph -> ( ( Scalar ` T ) freeLMod I ) = F ) |
| 39 |
38
|
fveq2d |
|- ( ph -> ( Base ` ( ( Scalar ` T ) freeLMod I ) ) = ( Base ` F ) ) |
| 40 |
39 2
|
eqtr4di |
|- ( ph -> ( Base ` ( ( Scalar ` T ) freeLMod I ) ) = B ) |
| 41 |
40
|
raleqdv |
|- ( ph -> ( A. y e. ( Base ` ( ( Scalar ` T ) freeLMod I ) ) ( ( T gsum ( y oF .x. A ) ) = ( 0g ` T ) -> y = ( I X. { ( 0g ` ( Scalar ` T ) ) } ) ) <-> A. y e. B ( ( T gsum ( y oF .x. A ) ) = ( 0g ` T ) -> y = ( I X. { ( 0g ` ( Scalar ` T ) ) } ) ) ) ) |
| 42 |
35 41
|
bitr4d |
|- ( ph -> ( A. y e. B ( ( E ` y ) = ( 0g ` T ) -> y = ( 0g ` F ) ) <-> A. y e. ( Base ` ( ( Scalar ` T ) freeLMod I ) ) ( ( T gsum ( y oF .x. A ) ) = ( 0g ` T ) -> y = ( I X. { ( 0g ` ( Scalar ` T ) ) } ) ) ) ) |
| 43 |
15 42
|
bitr4d |
|- ( ph -> ( A LIndF T <-> A. y e. B ( ( E ` y ) = ( 0g ` T ) -> y = ( 0g ` F ) ) ) ) |
| 44 |
1 2 3 4 5 6 7 8 9
|
frlmup1 |
|- ( ph -> E e. ( F LMHom T ) ) |
| 45 |
|
lmghm |
|- ( E e. ( F LMHom T ) -> E e. ( F GrpHom T ) ) |
| 46 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
| 47 |
2 3 46 11
|
ghmf1 |
|- ( E e. ( F GrpHom T ) -> ( E : B -1-1-> C <-> A. y e. B ( ( E ` y ) = ( 0g ` T ) -> y = ( 0g ` F ) ) ) ) |
| 48 |
44 45 47
|
3syl |
|- ( ph -> ( E : B -1-1-> C <-> A. y e. B ( ( E ` y ) = ( 0g ` T ) -> y = ( 0g ` F ) ) ) ) |
| 49 |
43 48
|
bitr4d |
|- ( ph -> ( A LIndF T <-> E : B -1-1-> C ) ) |