Description: An independent set is a set which is independent as a family. See also islinds3 and islinds4 . (Contributed by Stefan O'Rear, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-linds | |- LIndS = ( w e. _V |-> { s e. ~P ( Base ` w ) | ( _I |` s ) LIndF w } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clinds | |- LIndS |
|
| 1 | vw | |- w |
|
| 2 | cvv | |- _V |
|
| 3 | vs | |- s |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- w |
| 6 | 5 4 | cfv | |- ( Base ` w ) |
| 7 | 6 | cpw | |- ~P ( Base ` w ) |
| 8 | cid | |- _I |
|
| 9 | 3 | cv | |- s |
| 10 | 8 9 | cres | |- ( _I |` s ) |
| 11 | clindf | |- LIndF |
|
| 12 | 10 5 11 | wbr | |- ( _I |` s ) LIndF w |
| 13 | 12 3 7 | crab | |- { s e. ~P ( Base ` w ) | ( _I |` s ) LIndF w } |
| 14 | 1 2 13 | cmpt | |- ( w e. _V |-> { s e. ~P ( Base ` w ) | ( _I |` s ) LIndF w } ) |
| 15 | 0 14 | wceq | |- LIndS = ( w e. _V |-> { s e. ~P ( Base ` w ) | ( _I |` s ) LIndF w } ) |