Description: An independent set is a set which is independent as a family. See also islinds3 and islinds4 . (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-linds | |- LIndS = ( w e. _V |-> { s e. ~P ( Base ` w ) | ( _I |` s ) LIndF w } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | clinds | |- LIndS |
|
1 | vw | |- w |
|
2 | cvv | |- _V |
|
3 | vs | |- s |
|
4 | cbs | |- Base |
|
5 | 1 | cv | |- w |
6 | 5 4 | cfv | |- ( Base ` w ) |
7 | 6 | cpw | |- ~P ( Base ` w ) |
8 | cid | |- _I |
|
9 | 3 | cv | |- s |
10 | 8 9 | cres | |- ( _I |` s ) |
11 | clindf | |- LIndF |
|
12 | 10 5 11 | wbr | |- ( _I |` s ) LIndF w |
13 | 12 3 7 | crab | |- { s e. ~P ( Base ` w ) | ( _I |` s ) LIndF w } |
14 | 1 2 13 | cmpt | |- ( w e. _V |-> { s e. ~P ( Base ` w ) | ( _I |` s ) LIndF w } ) |
15 | 0 14 | wceq | |- LIndS = ( w e. _V |-> { s e. ~P ( Base ` w ) | ( _I |` s ) LIndF w } ) |