Metamath Proof Explorer


Definition df-linds

Description: An independent set is a set which is independent as a family. See also islinds3 and islinds4 . (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion df-linds
|- LIndS = ( w e. _V |-> { s e. ~P ( Base ` w ) | ( _I |` s ) LIndF w } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clinds
 |-  LIndS
1 vw
 |-  w
2 cvv
 |-  _V
3 vs
 |-  s
4 cbs
 |-  Base
5 1 cv
 |-  w
6 5 4 cfv
 |-  ( Base ` w )
7 6 cpw
 |-  ~P ( Base ` w )
8 cid
 |-  _I
9 3 cv
 |-  s
10 8 9 cres
 |-  ( _I |` s )
11 clindf
 |-  LIndF
12 10 5 11 wbr
 |-  ( _I |` s ) LIndF w
13 12 3 7 crab
 |-  { s e. ~P ( Base ` w ) | ( _I |` s ) LIndF w }
14 1 2 13 cmpt
 |-  ( w e. _V |-> { s e. ~P ( Base ` w ) | ( _I |` s ) LIndF w } )
15 0 14 wceq
 |-  LIndS = ( w e. _V |-> { s e. ~P ( Base ` w ) | ( _I |` s ) LIndF w } )