Metamath Proof Explorer


Definition df-linds

Description: An independent set is a set which is independent as a family. See also islinds3 and islinds4 . (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion df-linds LIndS = w V s 𝒫 Base w | I s LIndF w

Detailed syntax breakdown

Step Hyp Ref Expression
0 clinds class LIndS
1 vw setvar w
2 cvv class V
3 vs setvar s
4 cbs class Base
5 1 cv setvar w
6 5 4 cfv class Base w
7 6 cpw class 𝒫 Base w
8 cid class I
9 3 cv setvar s
10 8 9 cres class I s
11 clindf class LIndF
12 10 5 11 wbr wff I s LIndF w
13 12 3 7 crab class s 𝒫 Base w | I s LIndF w
14 1 2 13 cmpt class w V s 𝒫 Base w | I s LIndF w
15 0 14 wceq wff LIndS = w V s 𝒫 Base w | I s LIndF w