Metamath Proof Explorer


Definition df-linds

Description: An independent set is a set which is independent as a family. See also islinds3 and islinds4 . (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion df-linds LIndS=wVs𝒫Basew|IsLIndFw

Detailed syntax breakdown

Step Hyp Ref Expression
0 clinds classLIndS
1 vw setvarw
2 cvv classV
3 vs setvars
4 cbs classBase
5 1 cv setvarw
6 5 4 cfv classBasew
7 6 cpw class𝒫Basew
8 cid classI
9 3 cv setvars
10 8 9 cres classIs
11 clindf classLIndF
12 10 5 11 wbr wffIsLIndFw
13 12 3 7 crab classs𝒫Basew|IsLIndFw
14 1 2 13 cmpt classwVs𝒫Basew|IsLIndFw
15 0 14 wceq wffLIndS=wVs𝒫Basew|IsLIndFw