Database
BASIC LINEAR ALGEBRA
Vectors and free modules
Independent sets and families
df-linds
Metamath Proof Explorer
Description: An independent set is a set which is independent as a family. See also
islinds3 and islinds4 . (Contributed by Stefan O'Rear , 24-Feb-2015)
Ref
Expression
Assertion
df-linds
⊢ LIndS = w ∈ V ⟼ s ∈ 𝒫 Base w | I ↾ s LIndF w
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
clinds
class LIndS
1
vw
setvar w
2
cvv
class V
3
vs
setvar s
4
cbs
class Base
5
1
cv
setvar w
6
5 4
cfv
class Base w
7
6
cpw
class 𝒫 Base w
8
cid
class I
9
3
cv
setvar s
10
8 9
cres
class I ↾ s
11
clindf
class LIndF
12
10 5 11
wbr
wff I ↾ s LIndF w
13
12 3 7
crab
class s ∈ 𝒫 Base w | I ↾ s LIndF w
14
1 2 13
cmpt
class w ∈ V ⟼ s ∈ 𝒫 Base w | I ↾ s LIndF w
15
0 14
wceq
wff LIndS = w ∈ V ⟼ s ∈ 𝒫 Base w | I ↾ s LIndF w