Metamath Proof Explorer


Definition df-linds

Description: An independent set is a set which is independent as a family. See also islinds3 and islinds4 . (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion df-linds LIndS = ( 𝑤 ∈ V ↦ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ ( I ↾ 𝑠 ) LIndF 𝑤 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clinds LIndS
1 vw 𝑤
2 cvv V
3 vs 𝑠
4 cbs Base
5 1 cv 𝑤
6 5 4 cfv ( Base ‘ 𝑤 )
7 6 cpw 𝒫 ( Base ‘ 𝑤 )
8 cid I
9 3 cv 𝑠
10 8 9 cres ( I ↾ 𝑠 )
11 clindf LIndF
12 10 5 11 wbr ( I ↾ 𝑠 ) LIndF 𝑤
13 12 3 7 crab { 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ ( I ↾ 𝑠 ) LIndF 𝑤 }
14 1 2 13 cmpt ( 𝑤 ∈ V ↦ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ ( I ↾ 𝑠 ) LIndF 𝑤 } )
15 0 14 wceq LIndS = ( 𝑤 ∈ V ↦ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ ( I ↾ 𝑠 ) LIndF 𝑤 } )