Database
BASIC LINEAR ALGEBRA
Vectors and free modules
Independent sets and families
df-linds
Metamath Proof Explorer
Description: An independent set is a set which is independent as a family. See also
islinds3 and islinds4 . (Contributed by Stefan O'Rear , 24-Feb-2015)
Ref
Expression
Assertion
df-linds
⊢ LIndS = ( 𝑤 ∈ V ↦ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ ( I ↾ 𝑠 ) LIndF 𝑤 } )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
clinds
⊢ LIndS
1
vw
⊢ 𝑤
2
cvv
⊢ V
3
vs
⊢ 𝑠
4
cbs
⊢ Base
5
1
cv
⊢ 𝑤
6
5 4
cfv
⊢ ( Base ‘ 𝑤 )
7
6
cpw
⊢ 𝒫 ( Base ‘ 𝑤 )
8
cid
⊢ I
9
3
cv
⊢ 𝑠
10
8 9
cres
⊢ ( I ↾ 𝑠 )
11
clindf
⊢ LIndF
12
10 5 11
wbr
⊢ ( I ↾ 𝑠 ) LIndF 𝑤
13
12 3 7
crab
⊢ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ ( I ↾ 𝑠 ) LIndF 𝑤 }
14
1 2 13
cmpt
⊢ ( 𝑤 ∈ V ↦ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ ( I ↾ 𝑠 ) LIndF 𝑤 } )
15
0 14
wceq
⊢ LIndS = ( 𝑤 ∈ V ↦ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ ( I ↾ 𝑠 ) LIndF 𝑤 } )