| Step | Hyp | Ref | Expression | 
						
							| 1 |  | islinds4.j | ⊢ 𝐽  =  ( LBasis ‘ 𝑊 ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝑌  ∈  ( LIndS ‘ 𝑊 ) )  →  𝑊  ∈  LVec ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 4 | 3 | linds1 | ⊢ ( 𝑌  ∈  ( LIndS ‘ 𝑊 )  →  𝑌  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝑌  ∈  ( LIndS ‘ 𝑊 ) )  →  𝑌  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 6 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝑌  ∈  ( LIndS ‘ 𝑊 ) )  ∧  𝑥  ∈  𝑌 )  →  𝑊  ∈  LMod ) | 
						
							| 8 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 9 | 8 | lvecdrng | ⊢ ( 𝑊  ∈  LVec  →  ( Scalar ‘ 𝑊 )  ∈  DivRing ) | 
						
							| 10 |  | drngnzr | ⊢ ( ( Scalar ‘ 𝑊 )  ∈  DivRing  →  ( Scalar ‘ 𝑊 )  ∈  NzRing ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑊  ∈  LVec  →  ( Scalar ‘ 𝑊 )  ∈  NzRing ) | 
						
							| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝑌  ∈  ( LIndS ‘ 𝑊 ) )  ∧  𝑥  ∈  𝑌 )  →  ( Scalar ‘ 𝑊 )  ∈  NzRing ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝑌  ∈  ( LIndS ‘ 𝑊 ) )  ∧  𝑥  ∈  𝑌 )  →  𝑌  ∈  ( LIndS ‘ 𝑊 ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝑌  ∈  ( LIndS ‘ 𝑊 ) )  ∧  𝑥  ∈  𝑌 )  →  𝑥  ∈  𝑌 ) | 
						
							| 15 |  | eqid | ⊢ ( LSpan ‘ 𝑊 )  =  ( LSpan ‘ 𝑊 ) | 
						
							| 16 | 15 8 | lindsind2 | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  ( Scalar ‘ 𝑊 )  ∈  NzRing )  ∧  𝑌  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑥  ∈  𝑌 )  →  ¬  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑌  ∖  { 𝑥 } ) ) ) | 
						
							| 17 | 7 12 13 14 16 | syl211anc | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝑌  ∈  ( LIndS ‘ 𝑊 ) )  ∧  𝑥  ∈  𝑌 )  →  ¬  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑌  ∖  { 𝑥 } ) ) ) | 
						
							| 18 | 17 | ralrimiva | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝑌  ∈  ( LIndS ‘ 𝑊 ) )  →  ∀ 𝑥  ∈  𝑌 ¬  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑌  ∖  { 𝑥 } ) ) ) | 
						
							| 19 | 1 3 15 | lbsext | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝑌  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  𝑌 ¬  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑌  ∖  { 𝑥 } ) ) )  →  ∃ 𝑏  ∈  𝐽 𝑌  ⊆  𝑏 ) | 
						
							| 20 | 2 5 18 19 | syl3anc | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝑌  ∈  ( LIndS ‘ 𝑊 ) )  →  ∃ 𝑏  ∈  𝐽 𝑌  ⊆  𝑏 ) | 
						
							| 21 | 20 | ex | ⊢ ( 𝑊  ∈  LVec  →  ( 𝑌  ∈  ( LIndS ‘ 𝑊 )  →  ∃ 𝑏  ∈  𝐽 𝑌  ⊆  𝑏 ) ) | 
						
							| 22 | 6 | ad2antrr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝑏  ∈  𝐽 )  ∧  𝑌  ⊆  𝑏 )  →  𝑊  ∈  LMod ) | 
						
							| 23 | 1 | lbslinds | ⊢ 𝐽  ⊆  ( LIndS ‘ 𝑊 ) | 
						
							| 24 | 23 | sseli | ⊢ ( 𝑏  ∈  𝐽  →  𝑏  ∈  ( LIndS ‘ 𝑊 ) ) | 
						
							| 25 | 24 | ad2antlr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝑏  ∈  𝐽 )  ∧  𝑌  ⊆  𝑏 )  →  𝑏  ∈  ( LIndS ‘ 𝑊 ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝑏  ∈  𝐽 )  ∧  𝑌  ⊆  𝑏 )  →  𝑌  ⊆  𝑏 ) | 
						
							| 27 |  | lindsss | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑏  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑌  ⊆  𝑏 )  →  𝑌  ∈  ( LIndS ‘ 𝑊 ) ) | 
						
							| 28 | 22 25 26 27 | syl3anc | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝑏  ∈  𝐽 )  ∧  𝑌  ⊆  𝑏 )  →  𝑌  ∈  ( LIndS ‘ 𝑊 ) ) | 
						
							| 29 | 28 | rexlimdva2 | ⊢ ( 𝑊  ∈  LVec  →  ( ∃ 𝑏  ∈  𝐽 𝑌  ⊆  𝑏  →  𝑌  ∈  ( LIndS ‘ 𝑊 ) ) ) | 
						
							| 30 | 21 29 | impbid | ⊢ ( 𝑊  ∈  LVec  →  ( 𝑌  ∈  ( LIndS ‘ 𝑊 )  ↔  ∃ 𝑏  ∈  𝐽 𝑌  ⊆  𝑏 ) ) |