Step |
Hyp |
Ref |
Expression |
1 |
|
islinds4.j |
⊢ 𝐽 = ( LBasis ‘ 𝑊 ) |
2 |
|
simpl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) → 𝑊 ∈ LVec ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
4 |
3
|
linds1 |
⊢ ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) → 𝑌 ⊆ ( Base ‘ 𝑊 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) → 𝑌 ⊆ ( Base ‘ 𝑊 ) ) |
6 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 𝑥 ∈ 𝑌 ) → 𝑊 ∈ LMod ) |
8 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
9 |
8
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
10 |
|
drngnzr |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ DivRing → ( Scalar ‘ 𝑊 ) ∈ NzRing ) |
11 |
9 10
|
syl |
⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ NzRing ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( Scalar ‘ 𝑊 ) ∈ NzRing ) |
13 |
|
simplr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 𝑥 ∈ 𝑌 ) → 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) |
14 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑌 ) |
15 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
16 |
15 8
|
lindsind2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ NzRing ) ∧ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝑥 ∈ 𝑌 ) → ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑌 ∖ { 𝑥 } ) ) ) |
17 |
7 12 13 14 16
|
syl211anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 𝑥 ∈ 𝑌 ) → ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑌 ∖ { 𝑥 } ) ) ) |
18 |
17
|
ralrimiva |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) → ∀ 𝑥 ∈ 𝑌 ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑌 ∖ { 𝑥 } ) ) ) |
19 |
1 3 15
|
lbsext |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑌 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑌 ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑌 ∖ { 𝑥 } ) ) ) → ∃ 𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏 ) |
20 |
2 5 18 19
|
syl3anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) → ∃ 𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏 ) |
21 |
20
|
ex |
⊢ ( 𝑊 ∈ LVec → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) → ∃ 𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏 ) ) |
22 |
6
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽 ) ∧ 𝑌 ⊆ 𝑏 ) → 𝑊 ∈ LMod ) |
23 |
1
|
lbslinds |
⊢ 𝐽 ⊆ ( LIndS ‘ 𝑊 ) |
24 |
23
|
sseli |
⊢ ( 𝑏 ∈ 𝐽 → 𝑏 ∈ ( LIndS ‘ 𝑊 ) ) |
25 |
24
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽 ) ∧ 𝑌 ⊆ 𝑏 ) → 𝑏 ∈ ( LIndS ‘ 𝑊 ) ) |
26 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽 ) ∧ 𝑌 ⊆ 𝑏 ) → 𝑌 ⊆ 𝑏 ) |
27 |
|
lindsss |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑏 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝑌 ⊆ 𝑏 ) → 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) |
28 |
22 25 26 27
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽 ) ∧ 𝑌 ⊆ 𝑏 ) → 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) |
29 |
28
|
rexlimdva2 |
⊢ ( 𝑊 ∈ LVec → ( ∃ 𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏 → 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) ) |
30 |
21 29
|
impbid |
⊢ ( 𝑊 ∈ LVec → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ ∃ 𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏 ) ) |