Metamath Proof Explorer


Theorem lbsext

Description: For any linearly independent subset C of V , there is a basis containing the vectors in C . (Contributed by Mario Carneiro, 25-Jun-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypotheses lbsex.j 𝐽 = ( LBasis ‘ 𝑊 )
lbsex.v 𝑉 = ( Base ‘ 𝑊 )
lbsex.n 𝑁 = ( LSpan ‘ 𝑊 )
Assertion lbsext ( ( 𝑊 ∈ LVec ∧ 𝐶𝑉 ∧ ∀ 𝑥𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∃ 𝑠𝐽 𝐶𝑠 )

Proof

Step Hyp Ref Expression
1 lbsex.j 𝐽 = ( LBasis ‘ 𝑊 )
2 lbsex.v 𝑉 = ( Base ‘ 𝑊 )
3 lbsex.n 𝑁 = ( LSpan ‘ 𝑊 )
4 2 fvexi 𝑉 ∈ V
5 4 pwex 𝒫 𝑉 ∈ V
6 numth3 ( 𝒫 𝑉 ∈ V → 𝒫 𝑉 ∈ dom card )
7 5 6 ax-mp 𝒫 𝑉 ∈ dom card
8 7 jctr ( 𝑊 ∈ LVec → ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) )
9 1 2 3 lbsextg ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶𝑉 ∧ ∀ 𝑥𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∃ 𝑠𝐽 𝐶𝑠 )
10 8 9 syl3an1 ( ( 𝑊 ∈ LVec ∧ 𝐶𝑉 ∧ ∀ 𝑥𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∃ 𝑠𝐽 𝐶𝑠 )