Metamath Proof Explorer


Theorem lbsextg

Description: For any linearly independent subset C of V , there is a basis containing the vectors in C . (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Hypotheses lbsex.j 𝐽 = ( LBasis ‘ 𝑊 )
lbsex.v 𝑉 = ( Base ‘ 𝑊 )
lbsex.n 𝑁 = ( LSpan ‘ 𝑊 )
Assertion lbsextg ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶𝑉 ∧ ∀ 𝑥𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∃ 𝑠𝐽 𝐶𝑠 )

Proof

Step Hyp Ref Expression
1 lbsex.j 𝐽 = ( LBasis ‘ 𝑊 )
2 lbsex.v 𝑉 = ( Base ‘ 𝑊 )
3 lbsex.n 𝑁 = ( LSpan ‘ 𝑊 )
4 simp1l ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶𝑉 ∧ ∀ 𝑥𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → 𝑊 ∈ LVec )
5 simp2 ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶𝑉 ∧ ∀ 𝑥𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → 𝐶𝑉 )
6 simp3 ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶𝑉 ∧ ∀ 𝑥𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∀ 𝑥𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) )
7 id ( 𝑥 = 𝑦𝑥 = 𝑦 )
8 sneq ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } )
9 8 difeq2d ( 𝑥 = 𝑦 → ( 𝐶 ∖ { 𝑥 } ) = ( 𝐶 ∖ { 𝑦 } ) )
10 9 fveq2d ( 𝑥 = 𝑦 → ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝐶 ∖ { 𝑦 } ) ) )
11 7 10 eleq12d ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ↔ 𝑦 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑦 } ) ) ) )
12 11 notbid ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ↔ ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑦 } ) ) ) )
13 12 cbvralvw ( ∀ 𝑥𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ↔ ∀ 𝑦𝐶 ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑦 } ) ) )
14 6 13 sylib ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶𝑉 ∧ ∀ 𝑥𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∀ 𝑦𝐶 ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑦 } ) ) )
15 8 difeq2d ( 𝑥 = 𝑦 → ( 𝑧 ∖ { 𝑥 } ) = ( 𝑧 ∖ { 𝑦 } ) )
16 15 fveq2d ( 𝑥 = 𝑦 → ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) )
17 7 16 eleq12d ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ 𝑦 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) )
18 17 notbid ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) )
19 18 cbvralvw ( ∀ 𝑥𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ ∀ 𝑦𝑧 ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) )
20 19 anbi2i ( ( 𝐶𝑧 ∧ ∀ 𝑥𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) ↔ ( 𝐶𝑧 ∧ ∀ 𝑦𝑧 ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) )
21 20 rabbii { 𝑧 ∈ 𝒫 𝑉 ∣ ( 𝐶𝑧 ∧ ∀ 𝑥𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) } = { 𝑧 ∈ 𝒫 𝑉 ∣ ( 𝐶𝑧 ∧ ∀ 𝑦𝑧 ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) }
22 simp1r ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶𝑉 ∧ ∀ 𝑥𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → 𝒫 𝑉 ∈ dom card )
23 2 1 3 4 5 14 21 22 lbsextlem4 ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶𝑉 ∧ ∀ 𝑥𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∃ 𝑠𝐽 𝐶𝑠 )