Metamath Proof Explorer


Theorem linds1

Description: An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypothesis islinds.b 𝐵 = ( Base ‘ 𝑊 )
Assertion linds1 ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → 𝑋𝐵 )

Proof

Step Hyp Ref Expression
1 islinds.b 𝐵 = ( Base ‘ 𝑊 )
2 elfvdm ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → 𝑊 ∈ dom LIndS )
3 1 islinds ( 𝑊 ∈ dom LIndS → ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑋𝐵 ∧ ( I ↾ 𝑋 ) LIndF 𝑊 ) ) )
4 2 3 syl ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑋𝐵 ∧ ( I ↾ 𝑋 ) LIndF 𝑊 ) ) )
5 4 ibi ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → ( 𝑋𝐵 ∧ ( I ↾ 𝑋 ) LIndF 𝑊 ) )
6 5 simpld ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → 𝑋𝐵 )