Description: An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | linds2 | ⊢ ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → ( I ↾ 𝑋 ) LIndF 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | ⊢ ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → 𝑊 ∈ dom LIndS ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 3 | 2 | islinds | ⊢ ( 𝑊 ∈ dom LIndS → ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑋 ⊆ ( Base ‘ 𝑊 ) ∧ ( I ↾ 𝑋 ) LIndF 𝑊 ) ) ) |
| 4 | 1 3 | syl | ⊢ ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑋 ⊆ ( Base ‘ 𝑊 ) ∧ ( I ↾ 𝑋 ) LIndF 𝑊 ) ) ) |
| 5 | 4 | ibi | ⊢ ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → ( 𝑋 ⊆ ( Base ‘ 𝑊 ) ∧ ( I ↾ 𝑋 ) LIndF 𝑊 ) ) |
| 6 | 5 | simprd | ⊢ ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → ( I ↾ 𝑋 ) LIndF 𝑊 ) |