Metamath Proof Explorer


Theorem linds2

Description: An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion linds2 ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → ( I ↾ 𝑋 ) LIndF 𝑊 )

Proof

Step Hyp Ref Expression
1 elfvdm ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → 𝑊 ∈ dom LIndS )
2 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
3 2 islinds ( 𝑊 ∈ dom LIndS → ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑋 ⊆ ( Base ‘ 𝑊 ) ∧ ( I ↾ 𝑋 ) LIndF 𝑊 ) ) )
4 1 3 syl ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑋 ⊆ ( Base ‘ 𝑊 ) ∧ ( I ↾ 𝑋 ) LIndF 𝑊 ) ) )
5 4 ibi ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → ( 𝑋 ⊆ ( Base ‘ 𝑊 ) ∧ ( I ↾ 𝑋 ) LIndF 𝑊 ) )
6 5 simprd ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → ( I ↾ 𝑋 ) LIndF 𝑊 )