Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
2 |
1
|
linds1 |
⊢ ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) → 𝐹 ⊆ ( Base ‘ 𝑊 ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) → 𝐹 ⊆ ( Base ‘ 𝑊 ) ) |
4 |
|
sstr2 |
⊢ ( 𝐺 ⊆ 𝐹 → ( 𝐹 ⊆ ( Base ‘ 𝑊 ) → 𝐺 ⊆ ( Base ‘ 𝑊 ) ) ) |
5 |
3 4
|
syl5com |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) → ( 𝐺 ⊆ 𝐹 → 𝐺 ⊆ ( Base ‘ 𝑊 ) ) ) |
6 |
5
|
3impia |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐺 ⊆ 𝐹 ) → 𝐺 ⊆ ( Base ‘ 𝑊 ) ) |
7 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐺 ⊆ 𝐹 ) → 𝑊 ∈ LMod ) |
8 |
|
linds2 |
⊢ ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) → ( I ↾ 𝐹 ) LIndF 𝑊 ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐺 ⊆ 𝐹 ) → ( I ↾ 𝐹 ) LIndF 𝑊 ) |
10 |
|
lindfres |
⊢ ( ( 𝑊 ∈ LMod ∧ ( I ↾ 𝐹 ) LIndF 𝑊 ) → ( ( I ↾ 𝐹 ) ↾ 𝐺 ) LIndF 𝑊 ) |
11 |
7 9 10
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐺 ⊆ 𝐹 ) → ( ( I ↾ 𝐹 ) ↾ 𝐺 ) LIndF 𝑊 ) |
12 |
|
resabs1 |
⊢ ( 𝐺 ⊆ 𝐹 → ( ( I ↾ 𝐹 ) ↾ 𝐺 ) = ( I ↾ 𝐺 ) ) |
13 |
12
|
breq1d |
⊢ ( 𝐺 ⊆ 𝐹 → ( ( ( I ↾ 𝐹 ) ↾ 𝐺 ) LIndF 𝑊 ↔ ( I ↾ 𝐺 ) LIndF 𝑊 ) ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐺 ⊆ 𝐹 ) → ( ( ( I ↾ 𝐹 ) ↾ 𝐺 ) LIndF 𝑊 ↔ ( I ↾ 𝐺 ) LIndF 𝑊 ) ) |
15 |
11 14
|
mpbid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐺 ⊆ 𝐹 ) → ( I ↾ 𝐺 ) LIndF 𝑊 ) |
16 |
1
|
islinds |
⊢ ( 𝑊 ∈ LMod → ( 𝐺 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝐺 ⊆ ( Base ‘ 𝑊 ) ∧ ( I ↾ 𝐺 ) LIndF 𝑊 ) ) ) |
17 |
16
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐺 ⊆ 𝐹 ) → ( 𝐺 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝐺 ⊆ ( Base ‘ 𝑊 ) ∧ ( I ↾ 𝐺 ) LIndF 𝑊 ) ) ) |
18 |
6 15 17
|
mpbir2and |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐺 ⊆ 𝐹 ) → 𝐺 ∈ ( LIndS ‘ 𝑊 ) ) |