Metamath Proof Explorer


Theorem lbslinds

Description: A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypothesis lbslinds.j 𝐽 = ( LBasis ‘ 𝑊 )
Assertion lbslinds 𝐽 ⊆ ( LIndS ‘ 𝑊 )

Proof

Step Hyp Ref Expression
1 lbslinds.j 𝐽 = ( LBasis ‘ 𝑊 )
2 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
3 eqid ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 )
4 2 1 3 islbs4 ( 𝑎𝐽 ↔ ( 𝑎 ∈ ( LIndS ‘ 𝑊 ) ∧ ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) = ( Base ‘ 𝑊 ) ) )
5 4 simplbi ( 𝑎𝐽𝑎 ∈ ( LIndS ‘ 𝑊 ) )
6 5 ssriv 𝐽 ⊆ ( LIndS ‘ 𝑊 )