Description: A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lbslinds.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
Assertion | lbslinds | ⊢ 𝐽 ⊆ ( LIndS ‘ 𝑊 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbslinds.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
2 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
3 | eqid | ⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) | |
4 | 2 1 3 | islbs4 | ⊢ ( 𝑎 ∈ 𝐽 ↔ ( 𝑎 ∈ ( LIndS ‘ 𝑊 ) ∧ ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) = ( Base ‘ 𝑊 ) ) ) |
5 | 4 | simplbi | ⊢ ( 𝑎 ∈ 𝐽 → 𝑎 ∈ ( LIndS ‘ 𝑊 ) ) |
6 | 5 | ssriv | ⊢ 𝐽 ⊆ ( LIndS ‘ 𝑊 ) |