Step |
Hyp |
Ref |
Expression |
1 |
|
islbs4.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
islbs4.j |
⊢ 𝐽 = ( LBasis ‘ 𝑊 ) |
3 |
|
islbs4.k |
⊢ 𝐾 = ( LSpan ‘ 𝑊 ) |
4 |
|
elfvex |
⊢ ( 𝑋 ∈ ( LBasis ‘ 𝑊 ) → 𝑊 ∈ V ) |
5 |
4 2
|
eleq2s |
⊢ ( 𝑋 ∈ 𝐽 → 𝑊 ∈ V ) |
6 |
|
elfvex |
⊢ ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) → 𝑊 ∈ V ) |
7 |
6
|
adantr |
⊢ ( ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) → 𝑊 ∈ V ) |
8 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
10 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
11 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
12 |
1 8 9 10 2 3 11
|
islbs |
⊢ ( 𝑊 ∈ V → ( 𝑋 ∈ 𝐽 ↔ ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( 𝐾 ‘ ( 𝑋 ∖ { 𝑥 } ) ) ) ) ) |
13 |
|
3anan32 |
⊢ ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( 𝐾 ‘ ( 𝑋 ∖ { 𝑥 } ) ) ) ↔ ( ( 𝑋 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( 𝐾 ‘ ( 𝑋 ∖ { 𝑥 } ) ) ) ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ) |
14 |
1 9 3 8 10 11
|
islinds2 |
⊢ ( 𝑊 ∈ V → ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑋 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( 𝐾 ‘ ( 𝑋 ∖ { 𝑥 } ) ) ) ) ) |
15 |
14
|
anbi1d |
⊢ ( 𝑊 ∈ V → ( ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ↔ ( ( 𝑋 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( 𝐾 ‘ ( 𝑋 ∖ { 𝑥 } ) ) ) ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ) ) |
16 |
13 15
|
bitr4id |
⊢ ( 𝑊 ∈ V → ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( 𝐾 ‘ ( 𝑋 ∖ { 𝑥 } ) ) ) ↔ ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ) ) |
17 |
12 16
|
bitrd |
⊢ ( 𝑊 ∈ V → ( 𝑋 ∈ 𝐽 ↔ ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ) ) |
18 |
5 7 17
|
pm5.21nii |
⊢ ( 𝑋 ∈ 𝐽 ↔ ( 𝑋 ∈ ( LIndS ‘ 𝑊 ) ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ) |