Step |
Hyp |
Ref |
Expression |
1 |
|
islinds3.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
islinds3.k |
⊢ 𝐾 = ( LSpan ‘ 𝑊 ) |
3 |
|
islinds3.x |
⊢ 𝑋 = ( 𝑊 ↾s ( 𝐾 ‘ 𝑌 ) ) |
4 |
|
islinds3.j |
⊢ 𝐽 = ( LBasis ‘ 𝑋 ) |
5 |
1
|
linds1 |
⊢ ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) → 𝑌 ⊆ 𝐵 ) |
6 |
5
|
a1i |
⊢ ( 𝑊 ∈ LMod → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) → 𝑌 ⊆ 𝐵 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
8 |
7
|
linds1 |
⊢ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) → 𝑌 ⊆ ( Base ‘ 𝑋 ) ) |
9 |
3 1
|
ressbasss |
⊢ ( Base ‘ 𝑋 ) ⊆ 𝐵 |
10 |
8 9
|
sstrdi |
⊢ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) → 𝑌 ⊆ 𝐵 ) |
11 |
10
|
adantr |
⊢ ( ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) → 𝑌 ⊆ 𝐵 ) |
12 |
11
|
a1i |
⊢ ( 𝑊 ∈ LMod → ( ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) → 𝑌 ⊆ 𝐵 ) ) |
13 |
|
simpl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → 𝑊 ∈ LMod ) |
14 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
15 |
1 14 2
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝑌 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
16 |
1 2
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → 𝑌 ⊆ ( 𝐾 ‘ 𝑌 ) ) |
17 |
|
eqid |
⊢ ( LSpan ‘ 𝑋 ) = ( LSpan ‘ 𝑋 ) |
18 |
3 2 17 14
|
lsslsp |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐾 ‘ 𝑌 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑌 ⊆ ( 𝐾 ‘ 𝑌 ) ) → ( 𝐾 ‘ 𝑌 ) = ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) ) |
19 |
13 15 16 18
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝑌 ) = ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) ) |
20 |
1 2
|
lspssv |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝑌 ) ⊆ 𝐵 ) |
21 |
3 1
|
ressbas2 |
⊢ ( ( 𝐾 ‘ 𝑌 ) ⊆ 𝐵 → ( 𝐾 ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) |
22 |
20 21
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) |
23 |
19 22
|
eqtr3d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) |
24 |
23
|
biantrud |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) ) |
25 |
14 3
|
lsslinds |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐾 ‘ 𝑌 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑌 ⊆ ( 𝐾 ‘ 𝑌 ) ) → ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ↔ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) ) |
26 |
13 15 16 25
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ↔ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) ) |
27 |
26
|
bicomd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ 𝑌 ∈ ( LIndS ‘ 𝑋 ) ) ) |
28 |
27
|
anbi1d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) ) |
29 |
24 28
|
bitrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) ) |
30 |
29
|
ex |
⊢ ( 𝑊 ∈ LMod → ( 𝑌 ⊆ 𝐵 → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) ) ) |
31 |
6 12 30
|
pm5.21ndd |
⊢ ( 𝑊 ∈ LMod → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) ) |
32 |
7 4 17
|
islbs4 |
⊢ ( 𝑌 ∈ 𝐽 ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) |
33 |
31 32
|
bitr4di |
⊢ ( 𝑊 ∈ LMod → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ 𝑌 ∈ 𝐽 ) ) |