Metamath Proof Explorer


Theorem islinds3

Description: A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015)

Ref Expression
Hypotheses islinds3.b 𝐵 = ( Base ‘ 𝑊 )
islinds3.k 𝐾 = ( LSpan ‘ 𝑊 )
islinds3.x 𝑋 = ( 𝑊s ( 𝐾𝑌 ) )
islinds3.j 𝐽 = ( LBasis ‘ 𝑋 )
Assertion islinds3 ( 𝑊 ∈ LMod → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ 𝑌𝐽 ) )

Proof

Step Hyp Ref Expression
1 islinds3.b 𝐵 = ( Base ‘ 𝑊 )
2 islinds3.k 𝐾 = ( LSpan ‘ 𝑊 )
3 islinds3.x 𝑋 = ( 𝑊s ( 𝐾𝑌 ) )
4 islinds3.j 𝐽 = ( LBasis ‘ 𝑋 )
5 1 linds1 ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) → 𝑌𝐵 )
6 5 a1i ( 𝑊 ∈ LMod → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) → 𝑌𝐵 ) )
7 eqid ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 )
8 7 linds1 ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) → 𝑌 ⊆ ( Base ‘ 𝑋 ) )
9 3 1 ressbasss ( Base ‘ 𝑋 ) ⊆ 𝐵
10 8 9 sstrdi ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) → 𝑌𝐵 )
11 10 adantr ( ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) → 𝑌𝐵 )
12 11 a1i ( 𝑊 ∈ LMod → ( ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) → 𝑌𝐵 ) )
13 simpl ( ( 𝑊 ∈ LMod ∧ 𝑌𝐵 ) → 𝑊 ∈ LMod )
14 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
15 1 14 2 lspcl ( ( 𝑊 ∈ LMod ∧ 𝑌𝐵 ) → ( 𝐾𝑌 ) ∈ ( LSubSp ‘ 𝑊 ) )
16 1 2 lspssid ( ( 𝑊 ∈ LMod ∧ 𝑌𝐵 ) → 𝑌 ⊆ ( 𝐾𝑌 ) )
17 eqid ( LSpan ‘ 𝑋 ) = ( LSpan ‘ 𝑋 )
18 3 2 17 14 lsslsp ( ( 𝑊 ∈ LMod ∧ ( 𝐾𝑌 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑌 ⊆ ( 𝐾𝑌 ) ) → ( 𝐾𝑌 ) = ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) )
19 13 15 16 18 syl3anc ( ( 𝑊 ∈ LMod ∧ 𝑌𝐵 ) → ( 𝐾𝑌 ) = ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) )
20 1 2 lspssv ( ( 𝑊 ∈ LMod ∧ 𝑌𝐵 ) → ( 𝐾𝑌 ) ⊆ 𝐵 )
21 3 1 ressbas2 ( ( 𝐾𝑌 ) ⊆ 𝐵 → ( 𝐾𝑌 ) = ( Base ‘ 𝑋 ) )
22 20 21 syl ( ( 𝑊 ∈ LMod ∧ 𝑌𝐵 ) → ( 𝐾𝑌 ) = ( Base ‘ 𝑋 ) )
23 19 22 eqtr3d ( ( 𝑊 ∈ LMod ∧ 𝑌𝐵 ) → ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) )
24 23 biantrud ( ( 𝑊 ∈ LMod ∧ 𝑌𝐵 ) → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) )
25 14 3 lsslinds ( ( 𝑊 ∈ LMod ∧ ( 𝐾𝑌 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑌 ⊆ ( 𝐾𝑌 ) ) → ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ↔ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) )
26 13 15 16 25 syl3anc ( ( 𝑊 ∈ LMod ∧ 𝑌𝐵 ) → ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ↔ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) )
27 26 bicomd ( ( 𝑊 ∈ LMod ∧ 𝑌𝐵 ) → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ 𝑌 ∈ ( LIndS ‘ 𝑋 ) ) )
28 27 anbi1d ( ( 𝑊 ∈ LMod ∧ 𝑌𝐵 ) → ( ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) )
29 24 28 bitrd ( ( 𝑊 ∈ LMod ∧ 𝑌𝐵 ) → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) )
30 29 ex ( 𝑊 ∈ LMod → ( 𝑌𝐵 → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) ) )
31 6 12 30 pm5.21ndd ( 𝑊 ∈ LMod → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) )
32 7 4 17 islbs4 ( 𝑌𝐽 ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) )
33 31 32 bitr4di ( 𝑊 ∈ LMod → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ 𝑌𝐽 ) )