| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islinds3.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
islinds3.k |
⊢ 𝐾 = ( LSpan ‘ 𝑊 ) |
| 3 |
|
islinds3.x |
⊢ 𝑋 = ( 𝑊 ↾s ( 𝐾 ‘ 𝑌 ) ) |
| 4 |
|
islinds3.j |
⊢ 𝐽 = ( LBasis ‘ 𝑋 ) |
| 5 |
1
|
linds1 |
⊢ ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) → 𝑌 ⊆ 𝐵 ) |
| 6 |
5
|
a1i |
⊢ ( 𝑊 ∈ LMod → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) → 𝑌 ⊆ 𝐵 ) ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
| 8 |
7
|
linds1 |
⊢ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) → 𝑌 ⊆ ( Base ‘ 𝑋 ) ) |
| 9 |
3 1
|
ressbasss |
⊢ ( Base ‘ 𝑋 ) ⊆ 𝐵 |
| 10 |
8 9
|
sstrdi |
⊢ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) → 𝑌 ⊆ 𝐵 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) → 𝑌 ⊆ 𝐵 ) |
| 12 |
11
|
a1i |
⊢ ( 𝑊 ∈ LMod → ( ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) → 𝑌 ⊆ 𝐵 ) ) |
| 13 |
|
simpl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → 𝑊 ∈ LMod ) |
| 14 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 15 |
1 14 2
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝑌 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 16 |
1 2
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → 𝑌 ⊆ ( 𝐾 ‘ 𝑌 ) ) |
| 17 |
|
eqid |
⊢ ( LSpan ‘ 𝑋 ) = ( LSpan ‘ 𝑋 ) |
| 18 |
3 2 17 14
|
lsslsp |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐾 ‘ 𝑌 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑌 ⊆ ( 𝐾 ‘ 𝑌 ) ) → ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( 𝐾 ‘ 𝑌 ) ) |
| 19 |
13 15 16 18
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( 𝐾 ‘ 𝑌 ) ) |
| 20 |
1 2
|
lspssv |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝑌 ) ⊆ 𝐵 ) |
| 21 |
3 1
|
ressbas2 |
⊢ ( ( 𝐾 ‘ 𝑌 ) ⊆ 𝐵 → ( 𝐾 ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) |
| 22 |
20 21
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) |
| 23 |
19 22
|
eqtrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) |
| 24 |
23
|
biantrud |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) ) |
| 25 |
14 3
|
lsslinds |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐾 ‘ 𝑌 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑌 ⊆ ( 𝐾 ‘ 𝑌 ) ) → ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ↔ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) ) |
| 26 |
13 15 16 25
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ↔ 𝑌 ∈ ( LIndS ‘ 𝑊 ) ) ) |
| 27 |
26
|
bicomd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ 𝑌 ∈ ( LIndS ‘ 𝑋 ) ) ) |
| 28 |
27
|
anbi1d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) ) |
| 29 |
24 28
|
bitrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵 ) → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) ) |
| 30 |
29
|
ex |
⊢ ( 𝑊 ∈ LMod → ( 𝑌 ⊆ 𝐵 → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) ) ) |
| 31 |
6 12 30
|
pm5.21ndd |
⊢ ( 𝑊 ∈ LMod → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) ) |
| 32 |
7 4 17
|
islbs4 |
⊢ ( 𝑌 ∈ 𝐽 ↔ ( 𝑌 ∈ ( LIndS ‘ 𝑋 ) ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑌 ) = ( Base ‘ 𝑋 ) ) ) |
| 33 |
31 32
|
bitr4di |
⊢ ( 𝑊 ∈ LMod → ( 𝑌 ∈ ( LIndS ‘ 𝑊 ) ↔ 𝑌 ∈ 𝐽 ) ) |