Description: A set of vectors is a subset of its span. ( spanss2 analog.) (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
lspss.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
Assertion | lspssid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
2 | lspss.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
3 | ssintub | ⊢ 𝑈 ⊆ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑈 ⊆ 𝑡 } | |
4 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
5 | 1 4 2 | lspval | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑈 ) = ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑈 ⊆ 𝑡 } ) |
6 | 3 5 | sseqtrrid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) |