Metamath Proof Explorer


Theorem lspssid

Description: A set of vectors is a subset of its span. ( spanss2 analog.) (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspss.v 𝑉 = ( Base ‘ 𝑊 )
lspss.n 𝑁 = ( LSpan ‘ 𝑊 )
Assertion lspssid ( ( 𝑊 ∈ LMod ∧ 𝑈𝑉 ) → 𝑈 ⊆ ( 𝑁𝑈 ) )

Proof

Step Hyp Ref Expression
1 lspss.v 𝑉 = ( Base ‘ 𝑊 )
2 lspss.n 𝑁 = ( LSpan ‘ 𝑊 )
3 ssintub 𝑈 { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑈𝑡 }
4 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
5 1 4 2 lspval ( ( 𝑊 ∈ LMod ∧ 𝑈𝑉 ) → ( 𝑁𝑈 ) = { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑈𝑡 } )
6 3 5 sseqtrrid ( ( 𝑊 ∈ LMod ∧ 𝑈𝑉 ) → 𝑈 ⊆ ( 𝑁𝑈 ) )