Metamath Proof Explorer


Theorem lspssid

Description: A set of vectors is a subset of its span. ( spanss2 analog.) (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspss.v
|- V = ( Base ` W )
lspss.n
|- N = ( LSpan ` W )
Assertion lspssid
|- ( ( W e. LMod /\ U C_ V ) -> U C_ ( N ` U ) )

Proof

Step Hyp Ref Expression
1 lspss.v
 |-  V = ( Base ` W )
2 lspss.n
 |-  N = ( LSpan ` W )
3 ssintub
 |-  U C_ |^| { t e. ( LSubSp ` W ) | U C_ t }
4 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
5 1 4 2 lspval
 |-  ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) = |^| { t e. ( LSubSp ` W ) | U C_ t } )
6 3 5 sseqtrrid
 |-  ( ( W e. LMod /\ U C_ V ) -> U C_ ( N ` U ) )