Step |
Hyp |
Ref |
Expression |
1 |
|
lspval.v |
|- V = ( Base ` W ) |
2 |
|
lspval.s |
|- S = ( LSubSp ` W ) |
3 |
|
lspval.n |
|- N = ( LSpan ` W ) |
4 |
1 2 3
|
lspfval |
|- ( W e. LMod -> N = ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ) |
5 |
4
|
fveq1d |
|- ( W e. LMod -> ( N ` U ) = ( ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ` U ) ) |
6 |
5
|
adantr |
|- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) = ( ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ` U ) ) |
7 |
|
eqid |
|- ( s e. ~P V |-> |^| { t e. S | s C_ t } ) = ( s e. ~P V |-> |^| { t e. S | s C_ t } ) |
8 |
|
sseq1 |
|- ( s = U -> ( s C_ t <-> U C_ t ) ) |
9 |
8
|
rabbidv |
|- ( s = U -> { t e. S | s C_ t } = { t e. S | U C_ t } ) |
10 |
9
|
inteqd |
|- ( s = U -> |^| { t e. S | s C_ t } = |^| { t e. S | U C_ t } ) |
11 |
|
simpr |
|- ( ( W e. LMod /\ U C_ V ) -> U C_ V ) |
12 |
1
|
fvexi |
|- V e. _V |
13 |
12
|
elpw2 |
|- ( U e. ~P V <-> U C_ V ) |
14 |
11 13
|
sylibr |
|- ( ( W e. LMod /\ U C_ V ) -> U e. ~P V ) |
15 |
1 2
|
lss1 |
|- ( W e. LMod -> V e. S ) |
16 |
|
sseq2 |
|- ( t = V -> ( U C_ t <-> U C_ V ) ) |
17 |
16
|
rspcev |
|- ( ( V e. S /\ U C_ V ) -> E. t e. S U C_ t ) |
18 |
15 17
|
sylan |
|- ( ( W e. LMod /\ U C_ V ) -> E. t e. S U C_ t ) |
19 |
|
intexrab |
|- ( E. t e. S U C_ t <-> |^| { t e. S | U C_ t } e. _V ) |
20 |
18 19
|
sylib |
|- ( ( W e. LMod /\ U C_ V ) -> |^| { t e. S | U C_ t } e. _V ) |
21 |
7 10 14 20
|
fvmptd3 |
|- ( ( W e. LMod /\ U C_ V ) -> ( ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ` U ) = |^| { t e. S | U C_ t } ) |
22 |
6 21
|
eqtrd |
|- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) = |^| { t e. S | U C_ t } ) |