Metamath Proof Explorer


Theorem lspcl

Description: The span of a set of vectors is a subspace. ( spancl analog.) (Contributed by NM, 9-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspval.v
|- V = ( Base ` W )
lspval.s
|- S = ( LSubSp ` W )
lspval.n
|- N = ( LSpan ` W )
Assertion lspcl
|- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) e. S )

Proof

Step Hyp Ref Expression
1 lspval.v
 |-  V = ( Base ` W )
2 lspval.s
 |-  S = ( LSubSp ` W )
3 lspval.n
 |-  N = ( LSpan ` W )
4 1 2 3 lspf
 |-  ( W e. LMod -> N : ~P V --> S )
5 1 fvexi
 |-  V e. _V
6 5 elpw2
 |-  ( U e. ~P V <-> U C_ V )
7 6 biimpri
 |-  ( U C_ V -> U e. ~P V )
8 ffvelrn
 |-  ( ( N : ~P V --> S /\ U e. ~P V ) -> ( N ` U ) e. S )
9 4 7 8 syl2an
 |-  ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) e. S )