Description: The span of a set of vectors is a subspace. ( spancl analog.) (Contributed by NM, 9-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspval.v | |- V = ( Base ` W ) |
|
lspval.s | |- S = ( LSubSp ` W ) |
||
lspval.n | |- N = ( LSpan ` W ) |
||
Assertion | lspcl | |- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) e. S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspval.v | |- V = ( Base ` W ) |
|
2 | lspval.s | |- S = ( LSubSp ` W ) |
|
3 | lspval.n | |- N = ( LSpan ` W ) |
|
4 | 1 2 3 | lspf | |- ( W e. LMod -> N : ~P V --> S ) |
5 | 1 | fvexi | |- V e. _V |
6 | 5 | elpw2 | |- ( U e. ~P V <-> U C_ V ) |
7 | 6 | biimpri | |- ( U C_ V -> U e. ~P V ) |
8 | ffvelrn | |- ( ( N : ~P V --> S /\ U e. ~P V ) -> ( N ` U ) e. S ) |
|
9 | 4 7 8 | syl2an | |- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) e. S ) |