Metamath Proof Explorer


Theorem lspsncl

Description: The span of a singleton is a subspace (frequently used special case of lspcl ). (Contributed by NM, 17-Jul-2014)

Ref Expression
Hypotheses lspval.v
|- V = ( Base ` W )
lspval.s
|- S = ( LSubSp ` W )
lspval.n
|- N = ( LSpan ` W )
Assertion lspsncl
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. S )

Proof

Step Hyp Ref Expression
1 lspval.v
 |-  V = ( Base ` W )
2 lspval.s
 |-  S = ( LSubSp ` W )
3 lspval.n
 |-  N = ( LSpan ` W )
4 snssi
 |-  ( X e. V -> { X } C_ V )
5 1 2 3 lspcl
 |-  ( ( W e. LMod /\ { X } C_ V ) -> ( N ` { X } ) e. S )
6 4 5 sylan2
 |-  ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. S )