Metamath Proof Explorer


Theorem lspval

Description: The span of a set of vectors (in a left module). ( spanval analog.) (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspval.v V=BaseW
lspval.s S=LSubSpW
lspval.n N=LSpanW
Assertion lspval WLModUVNU=tS|Ut

Proof

Step Hyp Ref Expression
1 lspval.v V=BaseW
2 lspval.s S=LSubSpW
3 lspval.n N=LSpanW
4 1 2 3 lspfval WLModN=s𝒫VtS|st
5 4 fveq1d WLModNU=s𝒫VtS|stU
6 5 adantr WLModUVNU=s𝒫VtS|stU
7 eqid s𝒫VtS|st=s𝒫VtS|st
8 sseq1 s=UstUt
9 8 rabbidv s=UtS|st=tS|Ut
10 9 inteqd s=UtS|st=tS|Ut
11 simpr WLModUVUV
12 1 fvexi VV
13 12 elpw2 U𝒫VUV
14 11 13 sylibr WLModUVU𝒫V
15 1 2 lss1 WLModVS
16 sseq2 t=VUtUV
17 16 rspcev VSUVtSUt
18 15 17 sylan WLModUVtSUt
19 intexrab tSUttS|UtV
20 18 19 sylib WLModUVtS|UtV
21 7 10 14 20 fvmptd3 WLModUVs𝒫VtS|stU=tS|Ut
22 6 21 eqtrd WLModUVNU=tS|Ut