Metamath Proof Explorer


Theorem intexrab

Description: The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003)

Ref Expression
Assertion intexrab xAφxA|φV

Proof

Step Hyp Ref Expression
1 intexab xxAφx|xAφV
2 df-rex xAφxxAφ
3 df-rab xA|φ=x|xAφ
4 3 inteqi xA|φ=x|xAφ
5 4 eleq1i xA|φVx|xAφV
6 1 2 5 3bitr4i xAφxA|φV