Step |
Hyp |
Ref |
Expression |
1 |
|
lspval.v |
|- V = ( Base ` W ) |
2 |
|
lspval.s |
|- S = ( LSubSp ` W ) |
3 |
|
lspval.n |
|- N = ( LSpan ` W ) |
4 |
|
elex |
|- ( W e. X -> W e. _V ) |
5 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
6 |
5 1
|
eqtr4di |
|- ( w = W -> ( Base ` w ) = V ) |
7 |
6
|
pweqd |
|- ( w = W -> ~P ( Base ` w ) = ~P V ) |
8 |
|
fveq2 |
|- ( w = W -> ( LSubSp ` w ) = ( LSubSp ` W ) ) |
9 |
8 2
|
eqtr4di |
|- ( w = W -> ( LSubSp ` w ) = S ) |
10 |
9
|
rabeqdv |
|- ( w = W -> { t e. ( LSubSp ` w ) | s C_ t } = { t e. S | s C_ t } ) |
11 |
10
|
inteqd |
|- ( w = W -> |^| { t e. ( LSubSp ` w ) | s C_ t } = |^| { t e. S | s C_ t } ) |
12 |
7 11
|
mpteq12dv |
|- ( w = W -> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( LSubSp ` w ) | s C_ t } ) = ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ) |
13 |
|
df-lsp |
|- LSpan = ( w e. _V |-> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( LSubSp ` w ) | s C_ t } ) ) |
14 |
1
|
fvexi |
|- V e. _V |
15 |
14
|
pwex |
|- ~P V e. _V |
16 |
15
|
mptex |
|- ( s e. ~P V |-> |^| { t e. S | s C_ t } ) e. _V |
17 |
12 13 16
|
fvmpt |
|- ( W e. _V -> ( LSpan ` W ) = ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ) |
18 |
4 17
|
syl |
|- ( W e. X -> ( LSpan ` W ) = ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ) |
19 |
3 18
|
eqtrid |
|- ( W e. X -> N = ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ) |