Description: A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lbslinds.j | |- J = ( LBasis ` W ) |
|
Assertion | lbslinds | |- J C_ ( LIndS ` W ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbslinds.j | |- J = ( LBasis ` W ) |
|
2 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
3 | eqid | |- ( LSpan ` W ) = ( LSpan ` W ) |
|
4 | 2 1 3 | islbs4 | |- ( a e. J <-> ( a e. ( LIndS ` W ) /\ ( ( LSpan ` W ) ` a ) = ( Base ` W ) ) ) |
5 | 4 | simplbi | |- ( a e. J -> a e. ( LIndS ` W ) ) |
6 | 5 | ssriv | |- J C_ ( LIndS ` W ) |