Metamath Proof Explorer


Theorem lbslinds

Description: A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypothesis lbslinds.j
|- J = ( LBasis ` W )
Assertion lbslinds
|- J C_ ( LIndS ` W )

Proof

Step Hyp Ref Expression
1 lbslinds.j
 |-  J = ( LBasis ` W )
2 eqid
 |-  ( Base ` W ) = ( Base ` W )
3 eqid
 |-  ( LSpan ` W ) = ( LSpan ` W )
4 2 1 3 islbs4
 |-  ( a e. J <-> ( a e. ( LIndS ` W ) /\ ( ( LSpan ` W ) ` a ) = ( Base ` W ) ) )
5 4 simplbi
 |-  ( a e. J -> a e. ( LIndS ` W ) )
6 5 ssriv
 |-  J C_ ( LIndS ` W )