Step |
Hyp |
Ref |
Expression |
1 |
|
lindfind.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
2 |
|
lindfind.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lindfind.l |
⊢ 𝐿 = ( Scalar ‘ 𝑊 ) |
4 |
|
lindfind.z |
⊢ 0 = ( 0g ‘ 𝐿 ) |
5 |
|
lindfind.k |
⊢ 𝐾 = ( Base ‘ 𝐿 ) |
6 |
|
simplr |
⊢ ( ( ( 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → 𝐸 ∈ dom 𝐹 ) |
7 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ↔ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) |
8 |
7
|
biimpri |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) |
10 |
|
simpll |
⊢ ( ( ( 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → 𝐹 LIndF 𝑊 ) |
11 |
3 5
|
elbasfv |
⊢ ( 𝐴 ∈ 𝐾 → 𝑊 ∈ V ) |
12 |
11
|
ad2antrl |
⊢ ( ( ( 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → 𝑊 ∈ V ) |
13 |
|
rellindf |
⊢ Rel LIndF |
14 |
13
|
brrelex1i |
⊢ ( 𝐹 LIndF 𝑊 → 𝐹 ∈ V ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → 𝐹 ∈ V ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
17 |
16 1 2 3 5 4
|
islindf |
⊢ ( ( 𝑊 ∈ V ∧ 𝐹 ∈ V ) → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹 ⟶ ( Base ‘ 𝑊 ) ∧ ∀ 𝑒 ∈ dom 𝐹 ∀ 𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · ( 𝐹 ‘ 𝑒 ) ) ∈ ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑒 } ) ) ) ) ) ) |
18 |
12 15 17
|
syl2anc |
⊢ ( ( ( 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹 ⟶ ( Base ‘ 𝑊 ) ∧ ∀ 𝑒 ∈ dom 𝐹 ∀ 𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · ( 𝐹 ‘ 𝑒 ) ) ∈ ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑒 } ) ) ) ) ) ) |
19 |
10 18
|
mpbid |
⊢ ( ( ( 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → ( 𝐹 : dom 𝐹 ⟶ ( Base ‘ 𝑊 ) ∧ ∀ 𝑒 ∈ dom 𝐹 ∀ 𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · ( 𝐹 ‘ 𝑒 ) ) ∈ ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑒 } ) ) ) ) ) |
20 |
19
|
simprd |
⊢ ( ( ( 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → ∀ 𝑒 ∈ dom 𝐹 ∀ 𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · ( 𝐹 ‘ 𝑒 ) ) ∈ ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑒 } ) ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑒 = 𝐸 → ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝐸 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝑒 = 𝐸 → ( 𝑎 · ( 𝐹 ‘ 𝑒 ) ) = ( 𝑎 · ( 𝐹 ‘ 𝐸 ) ) ) |
23 |
|
sneq |
⊢ ( 𝑒 = 𝐸 → { 𝑒 } = { 𝐸 } ) |
24 |
23
|
difeq2d |
⊢ ( 𝑒 = 𝐸 → ( dom 𝐹 ∖ { 𝑒 } ) = ( dom 𝐹 ∖ { 𝐸 } ) ) |
25 |
24
|
imaeq2d |
⊢ ( 𝑒 = 𝐸 → ( 𝐹 “ ( dom 𝐹 ∖ { 𝑒 } ) ) = ( 𝐹 “ ( dom 𝐹 ∖ { 𝐸 } ) ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝑒 = 𝐸 → ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑒 } ) ) ) = ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝐸 } ) ) ) ) |
27 |
22 26
|
eleq12d |
⊢ ( 𝑒 = 𝐸 → ( ( 𝑎 · ( 𝐹 ‘ 𝑒 ) ) ∈ ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑒 } ) ) ) ↔ ( 𝑎 · ( 𝐹 ‘ 𝐸 ) ) ∈ ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝐸 } ) ) ) ) ) |
28 |
27
|
notbid |
⊢ ( 𝑒 = 𝐸 → ( ¬ ( 𝑎 · ( 𝐹 ‘ 𝑒 ) ) ∈ ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑒 } ) ) ) ↔ ¬ ( 𝑎 · ( 𝐹 ‘ 𝐸 ) ) ∈ ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝐸 } ) ) ) ) ) |
29 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 · ( 𝐹 ‘ 𝐸 ) ) = ( 𝐴 · ( 𝐹 ‘ 𝐸 ) ) ) |
30 |
29
|
eleq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 · ( 𝐹 ‘ 𝐸 ) ) ∈ ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝐸 } ) ) ) ↔ ( 𝐴 · ( 𝐹 ‘ 𝐸 ) ) ∈ ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝐸 } ) ) ) ) ) |
31 |
30
|
notbid |
⊢ ( 𝑎 = 𝐴 → ( ¬ ( 𝑎 · ( 𝐹 ‘ 𝐸 ) ) ∈ ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝐸 } ) ) ) ↔ ¬ ( 𝐴 · ( 𝐹 ‘ 𝐸 ) ) ∈ ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝐸 } ) ) ) ) ) |
32 |
28 31
|
rspc2va |
⊢ ( ( ( 𝐸 ∈ dom 𝐹 ∧ 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) ∧ ∀ 𝑒 ∈ dom 𝐹 ∀ 𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · ( 𝐹 ‘ 𝑒 ) ) ∈ ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑒 } ) ) ) ) → ¬ ( 𝐴 · ( 𝐹 ‘ 𝐸 ) ) ∈ ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝐸 } ) ) ) ) |
33 |
6 9 20 32
|
syl21anc |
⊢ ( ( ( 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → ¬ ( 𝐴 · ( 𝐹 ‘ 𝐸 ) ) ∈ ( 𝑁 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝐸 } ) ) ) ) |