Metamath Proof Explorer


Theorem lindfind

Description: A linearly independent family is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses lindfind.s · ˙ = W
lindfind.n N = LSpan W
lindfind.l L = Scalar W
lindfind.z 0 ˙ = 0 L
lindfind.k K = Base L
Assertion lindfind F LIndF W E dom F A K A 0 ˙ ¬ A · ˙ F E N F dom F E

Proof

Step Hyp Ref Expression
1 lindfind.s · ˙ = W
2 lindfind.n N = LSpan W
3 lindfind.l L = Scalar W
4 lindfind.z 0 ˙ = 0 L
5 lindfind.k K = Base L
6 simplr F LIndF W E dom F A K A 0 ˙ E dom F
7 eldifsn A K 0 ˙ A K A 0 ˙
8 7 biimpri A K A 0 ˙ A K 0 ˙
9 8 adantl F LIndF W E dom F A K A 0 ˙ A K 0 ˙
10 simpll F LIndF W E dom F A K A 0 ˙ F LIndF W
11 3 5 elbasfv A K W V
12 11 ad2antrl F LIndF W E dom F A K A 0 ˙ W V
13 rellindf Rel LIndF
14 13 brrelex1i F LIndF W F V
15 14 ad2antrr F LIndF W E dom F A K A 0 ˙ F V
16 eqid Base W = Base W
17 16 1 2 3 5 4 islindf W V F V F LIndF W F : dom F Base W e dom F a K 0 ˙ ¬ a · ˙ F e N F dom F e
18 12 15 17 syl2anc F LIndF W E dom F A K A 0 ˙ F LIndF W F : dom F Base W e dom F a K 0 ˙ ¬ a · ˙ F e N F dom F e
19 10 18 mpbid F LIndF W E dom F A K A 0 ˙ F : dom F Base W e dom F a K 0 ˙ ¬ a · ˙ F e N F dom F e
20 19 simprd F LIndF W E dom F A K A 0 ˙ e dom F a K 0 ˙ ¬ a · ˙ F e N F dom F e
21 fveq2 e = E F e = F E
22 21 oveq2d e = E a · ˙ F e = a · ˙ F E
23 sneq e = E e = E
24 23 difeq2d e = E dom F e = dom F E
25 24 imaeq2d e = E F dom F e = F dom F E
26 25 fveq2d e = E N F dom F e = N F dom F E
27 22 26 eleq12d e = E a · ˙ F e N F dom F e a · ˙ F E N F dom F E
28 27 notbid e = E ¬ a · ˙ F e N F dom F e ¬ a · ˙ F E N F dom F E
29 oveq1 a = A a · ˙ F E = A · ˙ F E
30 29 eleq1d a = A a · ˙ F E N F dom F E A · ˙ F E N F dom F E
31 30 notbid a = A ¬ a · ˙ F E N F dom F E ¬ A · ˙ F E N F dom F E
32 28 31 rspc2va E dom F A K 0 ˙ e dom F a K 0 ˙ ¬ a · ˙ F e N F dom F e ¬ A · ˙ F E N F dom F E
33 6 9 20 32 syl21anc F LIndF W E dom F A K A 0 ˙ ¬ A · ˙ F E N F dom F E