Step |
Hyp |
Ref |
Expression |
1 |
|
lindfind.s |
|- .x. = ( .s ` W ) |
2 |
|
lindfind.n |
|- N = ( LSpan ` W ) |
3 |
|
lindfind.l |
|- L = ( Scalar ` W ) |
4 |
|
lindfind.z |
|- .0. = ( 0g ` L ) |
5 |
|
lindfind.k |
|- K = ( Base ` L ) |
6 |
|
simplr |
|- ( ( ( F LIndF W /\ E e. dom F ) /\ ( A e. K /\ A =/= .0. ) ) -> E e. dom F ) |
7 |
|
eldifsn |
|- ( A e. ( K \ { .0. } ) <-> ( A e. K /\ A =/= .0. ) ) |
8 |
7
|
biimpri |
|- ( ( A e. K /\ A =/= .0. ) -> A e. ( K \ { .0. } ) ) |
9 |
8
|
adantl |
|- ( ( ( F LIndF W /\ E e. dom F ) /\ ( A e. K /\ A =/= .0. ) ) -> A e. ( K \ { .0. } ) ) |
10 |
|
simpll |
|- ( ( ( F LIndF W /\ E e. dom F ) /\ ( A e. K /\ A =/= .0. ) ) -> F LIndF W ) |
11 |
3 5
|
elbasfv |
|- ( A e. K -> W e. _V ) |
12 |
11
|
ad2antrl |
|- ( ( ( F LIndF W /\ E e. dom F ) /\ ( A e. K /\ A =/= .0. ) ) -> W e. _V ) |
13 |
|
rellindf |
|- Rel LIndF |
14 |
13
|
brrelex1i |
|- ( F LIndF W -> F e. _V ) |
15 |
14
|
ad2antrr |
|- ( ( ( F LIndF W /\ E e. dom F ) /\ ( A e. K /\ A =/= .0. ) ) -> F e. _V ) |
16 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
17 |
16 1 2 3 5 4
|
islindf |
|- ( ( W e. _V /\ F e. _V ) -> ( F LIndF W <-> ( F : dom F --> ( Base ` W ) /\ A. e e. dom F A. a e. ( K \ { .0. } ) -. ( a .x. ( F ` e ) ) e. ( N ` ( F " ( dom F \ { e } ) ) ) ) ) ) |
18 |
12 15 17
|
syl2anc |
|- ( ( ( F LIndF W /\ E e. dom F ) /\ ( A e. K /\ A =/= .0. ) ) -> ( F LIndF W <-> ( F : dom F --> ( Base ` W ) /\ A. e e. dom F A. a e. ( K \ { .0. } ) -. ( a .x. ( F ` e ) ) e. ( N ` ( F " ( dom F \ { e } ) ) ) ) ) ) |
19 |
10 18
|
mpbid |
|- ( ( ( F LIndF W /\ E e. dom F ) /\ ( A e. K /\ A =/= .0. ) ) -> ( F : dom F --> ( Base ` W ) /\ A. e e. dom F A. a e. ( K \ { .0. } ) -. ( a .x. ( F ` e ) ) e. ( N ` ( F " ( dom F \ { e } ) ) ) ) ) |
20 |
19
|
simprd |
|- ( ( ( F LIndF W /\ E e. dom F ) /\ ( A e. K /\ A =/= .0. ) ) -> A. e e. dom F A. a e. ( K \ { .0. } ) -. ( a .x. ( F ` e ) ) e. ( N ` ( F " ( dom F \ { e } ) ) ) ) |
21 |
|
fveq2 |
|- ( e = E -> ( F ` e ) = ( F ` E ) ) |
22 |
21
|
oveq2d |
|- ( e = E -> ( a .x. ( F ` e ) ) = ( a .x. ( F ` E ) ) ) |
23 |
|
sneq |
|- ( e = E -> { e } = { E } ) |
24 |
23
|
difeq2d |
|- ( e = E -> ( dom F \ { e } ) = ( dom F \ { E } ) ) |
25 |
24
|
imaeq2d |
|- ( e = E -> ( F " ( dom F \ { e } ) ) = ( F " ( dom F \ { E } ) ) ) |
26 |
25
|
fveq2d |
|- ( e = E -> ( N ` ( F " ( dom F \ { e } ) ) ) = ( N ` ( F " ( dom F \ { E } ) ) ) ) |
27 |
22 26
|
eleq12d |
|- ( e = E -> ( ( a .x. ( F ` e ) ) e. ( N ` ( F " ( dom F \ { e } ) ) ) <-> ( a .x. ( F ` E ) ) e. ( N ` ( F " ( dom F \ { E } ) ) ) ) ) |
28 |
27
|
notbid |
|- ( e = E -> ( -. ( a .x. ( F ` e ) ) e. ( N ` ( F " ( dom F \ { e } ) ) ) <-> -. ( a .x. ( F ` E ) ) e. ( N ` ( F " ( dom F \ { E } ) ) ) ) ) |
29 |
|
oveq1 |
|- ( a = A -> ( a .x. ( F ` E ) ) = ( A .x. ( F ` E ) ) ) |
30 |
29
|
eleq1d |
|- ( a = A -> ( ( a .x. ( F ` E ) ) e. ( N ` ( F " ( dom F \ { E } ) ) ) <-> ( A .x. ( F ` E ) ) e. ( N ` ( F " ( dom F \ { E } ) ) ) ) ) |
31 |
30
|
notbid |
|- ( a = A -> ( -. ( a .x. ( F ` E ) ) e. ( N ` ( F " ( dom F \ { E } ) ) ) <-> -. ( A .x. ( F ` E ) ) e. ( N ` ( F " ( dom F \ { E } ) ) ) ) ) |
32 |
28 31
|
rspc2va |
|- ( ( ( E e. dom F /\ A e. ( K \ { .0. } ) ) /\ A. e e. dom F A. a e. ( K \ { .0. } ) -. ( a .x. ( F ` e ) ) e. ( N ` ( F " ( dom F \ { e } ) ) ) ) -> -. ( A .x. ( F ` E ) ) e. ( N ` ( F " ( dom F \ { E } ) ) ) ) |
33 |
6 9 20 32
|
syl21anc |
|- ( ( ( F LIndF W /\ E e. dom F ) /\ ( A e. K /\ A =/= .0. ) ) -> -. ( A .x. ( F ` E ) ) e. ( N ` ( F " ( dom F \ { E } ) ) ) ) |