Metamath Proof Explorer


Theorem elbasfv

Description: Utility theorem: reverse closure for any structure defined as a function. (Contributed by Stefan O'Rear, 24-Aug-2015)

Ref Expression
Hypotheses elbasfv.s S=FZ
elbasfv.b B=BaseS
Assertion elbasfv XBZV

Proof

Step Hyp Ref Expression
1 elbasfv.s S=FZ
2 elbasfv.b B=BaseS
3 n0i XB¬B=
4 fvprc ¬ZVFZ=
5 1 4 eqtrid ¬ZVS=
6 5 fveq2d ¬ZVBaseS=Base
7 base0 =Base
8 6 2 7 3eqtr4g ¬ZVB=
9 3 8 nsyl2 XBZV