Step |
Hyp |
Ref |
Expression |
1 |
|
lindfind.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
2 |
|
lindfind.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lindfind.l |
⊢ 𝐿 = ( Scalar ‘ 𝑊 ) |
4 |
|
lindfind.z |
⊢ 0 = ( 0g ‘ 𝐿 ) |
5 |
|
lindfind.k |
⊢ 𝐾 = ( Base ‘ 𝐿 ) |
6 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐸 ∈ 𝐹 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → 𝐸 ∈ 𝐹 ) |
7 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ↔ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) |
8 |
7
|
biimpri |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐸 ∈ 𝐹 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) |
10 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) → 𝑊 ∈ dom LIndS ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
12 |
11 1 2 3 5 4
|
islinds2 |
⊢ ( 𝑊 ∈ dom LIndS → ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝐹 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑒 ∈ 𝐹 ∀ 𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) ) ) ) |
13 |
10 12
|
syl |
⊢ ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) → ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝐹 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑒 ∈ 𝐹 ∀ 𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) ) ) ) |
14 |
13
|
ibi |
⊢ ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) → ( 𝐹 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑒 ∈ 𝐹 ∀ 𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) ) ) |
15 |
14
|
simprd |
⊢ ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) → ∀ 𝑒 ∈ 𝐹 ∀ 𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐸 ∈ 𝐹 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → ∀ 𝑒 ∈ 𝐹 ∀ 𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑒 = 𝐸 → ( 𝑎 · 𝑒 ) = ( 𝑎 · 𝐸 ) ) |
18 |
|
sneq |
⊢ ( 𝑒 = 𝐸 → { 𝑒 } = { 𝐸 } ) |
19 |
18
|
difeq2d |
⊢ ( 𝑒 = 𝐸 → ( 𝐹 ∖ { 𝑒 } ) = ( 𝐹 ∖ { 𝐸 } ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑒 = 𝐸 → ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) = ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) ) |
21 |
17 20
|
eleq12d |
⊢ ( 𝑒 = 𝐸 → ( ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) ↔ ( 𝑎 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) ) ) |
22 |
21
|
notbid |
⊢ ( 𝑒 = 𝐸 → ( ¬ ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) ↔ ¬ ( 𝑎 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) ) ) |
23 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 · 𝐸 ) = ( 𝐴 · 𝐸 ) ) |
24 |
23
|
eleq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) ↔ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) ) ) |
25 |
24
|
notbid |
⊢ ( 𝑎 = 𝐴 → ( ¬ ( 𝑎 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) ↔ ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) ) ) |
26 |
22 25
|
rspc2va |
⊢ ( ( ( 𝐸 ∈ 𝐹 ∧ 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) ∧ ∀ 𝑒 ∈ 𝐹 ∀ 𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) ) |
27 |
6 9 16 26
|
syl21anc |
⊢ ( ( ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐸 ∈ 𝐹 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) ) |