Metamath Proof Explorer


Theorem lindsind

Description: A linearly independent set is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses lindfind.s · = ( ·𝑠𝑊 )
lindfind.n 𝑁 = ( LSpan ‘ 𝑊 )
lindfind.l 𝐿 = ( Scalar ‘ 𝑊 )
lindfind.z 0 = ( 0g𝐿 )
lindfind.k 𝐾 = ( Base ‘ 𝐿 )
Assertion lindsind ( ( ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐸𝐹 ) ∧ ( 𝐴𝐾𝐴0 ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) )

Proof

Step Hyp Ref Expression
1 lindfind.s · = ( ·𝑠𝑊 )
2 lindfind.n 𝑁 = ( LSpan ‘ 𝑊 )
3 lindfind.l 𝐿 = ( Scalar ‘ 𝑊 )
4 lindfind.z 0 = ( 0g𝐿 )
5 lindfind.k 𝐾 = ( Base ‘ 𝐿 )
6 simplr ( ( ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐸𝐹 ) ∧ ( 𝐴𝐾𝐴0 ) ) → 𝐸𝐹 )
7 eldifsn ( 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ↔ ( 𝐴𝐾𝐴0 ) )
8 7 biimpri ( ( 𝐴𝐾𝐴0 ) → 𝐴 ∈ ( 𝐾 ∖ { 0 } ) )
9 8 adantl ( ( ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐸𝐹 ) ∧ ( 𝐴𝐾𝐴0 ) ) → 𝐴 ∈ ( 𝐾 ∖ { 0 } ) )
10 elfvdm ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) → 𝑊 ∈ dom LIndS )
11 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
12 11 1 2 3 5 4 islinds2 ( 𝑊 ∈ dom LIndS → ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝐹 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑒𝐹𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) ) ) )
13 10 12 syl ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) → ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝐹 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑒𝐹𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) ) ) )
14 13 ibi ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) → ( 𝐹 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑒𝐹𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) ) )
15 14 simprd ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) → ∀ 𝑒𝐹𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) )
16 15 ad2antrr ( ( ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐸𝐹 ) ∧ ( 𝐴𝐾𝐴0 ) ) → ∀ 𝑒𝐹𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) )
17 oveq2 ( 𝑒 = 𝐸 → ( 𝑎 · 𝑒 ) = ( 𝑎 · 𝐸 ) )
18 sneq ( 𝑒 = 𝐸 → { 𝑒 } = { 𝐸 } )
19 18 difeq2d ( 𝑒 = 𝐸 → ( 𝐹 ∖ { 𝑒 } ) = ( 𝐹 ∖ { 𝐸 } ) )
20 19 fveq2d ( 𝑒 = 𝐸 → ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) = ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) )
21 17 20 eleq12d ( 𝑒 = 𝐸 → ( ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) ↔ ( 𝑎 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) ) )
22 21 notbid ( 𝑒 = 𝐸 → ( ¬ ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) ↔ ¬ ( 𝑎 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) ) )
23 oveq1 ( 𝑎 = 𝐴 → ( 𝑎 · 𝐸 ) = ( 𝐴 · 𝐸 ) )
24 23 eleq1d ( 𝑎 = 𝐴 → ( ( 𝑎 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) ↔ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) ) )
25 24 notbid ( 𝑎 = 𝐴 → ( ¬ ( 𝑎 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) ↔ ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) ) )
26 22 25 rspc2va ( ( ( 𝐸𝐹𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) ∧ ∀ 𝑒𝐹𝑎 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑎 · 𝑒 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝑒 } ) ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) )
27 6 9 16 26 syl21anc ( ( ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐸𝐹 ) ∧ ( 𝐴𝐾𝐴0 ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐹 ∖ { 𝐸 } ) ) )