Step |
Hyp |
Ref |
Expression |
1 |
|
lindff.b |
|- B = ( Base ` W ) |
2 |
|
simpl |
|- ( ( F LIndF W /\ W e. Y ) -> F LIndF W ) |
3 |
|
rellindf |
|- Rel LIndF |
4 |
3
|
brrelex1i |
|- ( F LIndF W -> F e. _V ) |
5 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
6 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
7 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
8 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
9 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
10 |
1 5 6 7 8 9
|
islindf |
|- ( ( W e. Y /\ F e. _V ) -> ( F LIndF W <-> ( F : dom F --> B /\ A. x e. dom F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) ( F ` x ) ) e. ( ( LSpan ` W ) ` ( F " ( dom F \ { x } ) ) ) ) ) ) |
11 |
4 10
|
sylan2 |
|- ( ( W e. Y /\ F LIndF W ) -> ( F LIndF W <-> ( F : dom F --> B /\ A. x e. dom F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) ( F ` x ) ) e. ( ( LSpan ` W ) ` ( F " ( dom F \ { x } ) ) ) ) ) ) |
12 |
11
|
ancoms |
|- ( ( F LIndF W /\ W e. Y ) -> ( F LIndF W <-> ( F : dom F --> B /\ A. x e. dom F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) ( F ` x ) ) e. ( ( LSpan ` W ) ` ( F " ( dom F \ { x } ) ) ) ) ) ) |
13 |
2 12
|
mpbid |
|- ( ( F LIndF W /\ W e. Y ) -> ( F : dom F --> B /\ A. x e. dom F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) ( F ` x ) ) e. ( ( LSpan ` W ) ` ( F " ( dom F \ { x } ) ) ) ) ) |
14 |
13
|
simpld |
|- ( ( F LIndF W /\ W e. Y ) -> F : dom F --> B ) |