Metamath Proof Explorer


Theorem lindff

Description: Functional property of a linearly independent family. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypothesis lindff.b B = Base W
Assertion lindff F LIndF W W Y F : dom F B

Proof

Step Hyp Ref Expression
1 lindff.b B = Base W
2 simpl F LIndF W W Y F LIndF W
3 rellindf Rel LIndF
4 3 brrelex1i F LIndF W F V
5 eqid W = W
6 eqid LSpan W = LSpan W
7 eqid Scalar W = Scalar W
8 eqid Base Scalar W = Base Scalar W
9 eqid 0 Scalar W = 0 Scalar W
10 1 5 6 7 8 9 islindf W Y F V F LIndF W F : dom F B x dom F k Base Scalar W 0 Scalar W ¬ k W F x LSpan W F dom F x
11 4 10 sylan2 W Y F LIndF W F LIndF W F : dom F B x dom F k Base Scalar W 0 Scalar W ¬ k W F x LSpan W F dom F x
12 11 ancoms F LIndF W W Y F LIndF W F : dom F B x dom F k Base Scalar W 0 Scalar W ¬ k W F x LSpan W F dom F x
13 2 12 mpbid F LIndF W W Y F : dom F B x dom F k Base Scalar W 0 Scalar W ¬ k W F x LSpan W F dom F x
14 13 simpld F LIndF W W Y F : dom F B