| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝑆 → ( 𝐹 ↾ 𝑆 ) = 𝐹 ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆 ) → ( 𝐹 ↾ 𝑆 ) = 𝐹 ) |
| 3 |
|
ressnop0 |
⊢ ( ¬ 𝑋 ∈ 𝑆 → ( { 〈 𝑋 , 𝑌 〉 } ↾ 𝑆 ) = ∅ ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆 ) → ( { 〈 𝑋 , 𝑌 〉 } ↾ 𝑆 ) = ∅ ) |
| 5 |
2 4
|
uneq12d |
⊢ ( ( 𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆 ) → ( ( 𝐹 ↾ 𝑆 ) ∪ ( { 〈 𝑋 , 𝑌 〉 } ↾ 𝑆 ) ) = ( 𝐹 ∪ ∅ ) ) |
| 6 |
|
resundir |
⊢ ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) ↾ 𝑆 ) = ( ( 𝐹 ↾ 𝑆 ) ∪ ( { 〈 𝑋 , 𝑌 〉 } ↾ 𝑆 ) ) |
| 7 |
|
un0 |
⊢ ( 𝐹 ∪ ∅ ) = 𝐹 |
| 8 |
7
|
eqcomi |
⊢ 𝐹 = ( 𝐹 ∪ ∅ ) |
| 9 |
5 6 8
|
3eqtr4g |
⊢ ( ( 𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆 ) → ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) ↾ 𝑆 ) = 𝐹 ) |