| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funrel |
⊢ ( Fun 𝐹 → Rel 𝐹 ) |
| 2 |
|
resdmdfsn |
⊢ ( Rel 𝐹 → ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( dom 𝐹 ∖ { 𝑋 } ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( Fun 𝐹 → ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( dom 𝐹 ∖ { 𝑋 } ) ) ) |
| 4 |
3
|
adantr |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( dom 𝐹 ∖ { 𝑋 } ) ) ) |
| 5 |
4
|
uneq1d |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) = ( ( 𝐹 ↾ ( dom 𝐹 ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) |
| 6 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
| 7 |
|
fnsnsplit |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝑋 ∈ dom 𝐹 ) → 𝐹 = ( ( 𝐹 ↾ ( dom 𝐹 ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) |
| 8 |
6 7
|
sylanb |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ) → 𝐹 = ( ( 𝐹 ↾ ( dom 𝐹 ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) |
| 9 |
5 8
|
eqtr4d |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) = 𝐹 ) |