Step |
Hyp |
Ref |
Expression |
1 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
2 |
1
|
adantr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
3 |
|
resundi |
⊢ ( 𝐹 ↾ ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ∪ ( 𝐹 ↾ { 𝑋 } ) ) |
4 |
|
difsnid |
⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) = 𝐴 ) |
5 |
4
|
adantl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) = 𝐴 ) |
6 |
5
|
reseq2d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ↾ ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = ( 𝐹 ↾ 𝐴 ) ) |
7 |
|
fnressn |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ↾ { 𝑋 } ) = { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) |
8 |
7
|
uneq2d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ∪ ( 𝐹 ↾ { 𝑋 } ) ) = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) |
9 |
3 6 8
|
3eqtr3a |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ↾ 𝐴 ) = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) |
10 |
2 9
|
eqtr3d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝐹 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) |