Metamath Proof Explorer


Theorem fnsnsplit

Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015)

Ref Expression
Assertion fnsnsplit FFnAXAF=FAXXFX

Proof

Step Hyp Ref Expression
1 fnresdm FFnAFA=F
2 1 adantr FFnAXAFA=F
3 resundi FAXX=FAXFX
4 difsnid XAAXX=A
5 4 adantl FFnAXAAXX=A
6 5 reseq2d FFnAXAFAXX=FA
7 fnressn FFnAXAFX=XFX
8 7 uneq2d FFnAXAFAXFX=FAXXFX
9 3 6 8 3eqtr3a FFnAXAFA=FAXXFX
10 2 9 eqtr3d FFnAXAF=FAXXFX