Step |
Hyp |
Ref |
Expression |
1 |
|
fnresdm |
|- ( F Fn A -> ( F |` A ) = F ) |
2 |
1
|
adantr |
|- ( ( F Fn A /\ X e. A ) -> ( F |` A ) = F ) |
3 |
|
resundi |
|- ( F |` ( ( A \ { X } ) u. { X } ) ) = ( ( F |` ( A \ { X } ) ) u. ( F |` { X } ) ) |
4 |
|
difsnid |
|- ( X e. A -> ( ( A \ { X } ) u. { X } ) = A ) |
5 |
4
|
adantl |
|- ( ( F Fn A /\ X e. A ) -> ( ( A \ { X } ) u. { X } ) = A ) |
6 |
5
|
reseq2d |
|- ( ( F Fn A /\ X e. A ) -> ( F |` ( ( A \ { X } ) u. { X } ) ) = ( F |` A ) ) |
7 |
|
fnressn |
|- ( ( F Fn A /\ X e. A ) -> ( F |` { X } ) = { <. X , ( F ` X ) >. } ) |
8 |
7
|
uneq2d |
|- ( ( F Fn A /\ X e. A ) -> ( ( F |` ( A \ { X } ) ) u. ( F |` { X } ) ) = ( ( F |` ( A \ { X } ) ) u. { <. X , ( F ` X ) >. } ) ) |
9 |
3 6 8
|
3eqtr3a |
|- ( ( F Fn A /\ X e. A ) -> ( F |` A ) = ( ( F |` ( A \ { X } ) ) u. { <. X , ( F ` X ) >. } ) ) |
10 |
2 9
|
eqtr3d |
|- ( ( F Fn A /\ X e. A ) -> F = ( ( F |` ( A \ { X } ) ) u. { <. X , ( F ` X ) >. } ) ) |