| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resindm |
⊢ ( Rel 𝑅 → ( 𝑅 ↾ ( ( V ∖ { 𝑋 } ) ∩ dom 𝑅 ) ) = ( 𝑅 ↾ ( V ∖ { 𝑋 } ) ) ) |
| 2 |
|
indif1 |
⊢ ( ( V ∖ { 𝑋 } ) ∩ dom 𝑅 ) = ( ( V ∩ dom 𝑅 ) ∖ { 𝑋 } ) |
| 3 |
|
incom |
⊢ ( V ∩ dom 𝑅 ) = ( dom 𝑅 ∩ V ) |
| 4 |
|
inv1 |
⊢ ( dom 𝑅 ∩ V ) = dom 𝑅 |
| 5 |
3 4
|
eqtri |
⊢ ( V ∩ dom 𝑅 ) = dom 𝑅 |
| 6 |
5
|
difeq1i |
⊢ ( ( V ∩ dom 𝑅 ) ∖ { 𝑋 } ) = ( dom 𝑅 ∖ { 𝑋 } ) |
| 7 |
2 6
|
eqtri |
⊢ ( ( V ∖ { 𝑋 } ) ∩ dom 𝑅 ) = ( dom 𝑅 ∖ { 𝑋 } ) |
| 8 |
7
|
reseq2i |
⊢ ( 𝑅 ↾ ( ( V ∖ { 𝑋 } ) ∩ dom 𝑅 ) ) = ( 𝑅 ↾ ( dom 𝑅 ∖ { 𝑋 } ) ) |
| 9 |
1 8
|
eqtr3di |
⊢ ( Rel 𝑅 → ( 𝑅 ↾ ( V ∖ { 𝑋 } ) ) = ( 𝑅 ↾ ( dom 𝑅 ∖ { 𝑋 } ) ) ) |