| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reseq2 |
⊢ ( dom 𝑅 = ( 𝐴 ∪ 𝐵 ) → ( 𝑅 ↾ dom 𝑅 ) = ( 𝑅 ↾ ( 𝐴 ∪ 𝐵 ) ) ) |
| 2 |
1
|
3ad2ant2 |
⊢ ( ( Rel 𝑅 ∧ dom 𝑅 = ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑅 ↾ dom 𝑅 ) = ( 𝑅 ↾ ( 𝐴 ∪ 𝐵 ) ) ) |
| 3 |
|
resdm |
⊢ ( Rel 𝑅 → ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ) |
| 4 |
3
|
3ad2ant1 |
⊢ ( ( Rel 𝑅 ∧ dom 𝑅 = ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ) |
| 5 |
|
resundi |
⊢ ( 𝑅 ↾ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑅 ↾ 𝐴 ) ∪ ( 𝑅 ↾ 𝐵 ) ) |
| 6 |
5
|
a1i |
⊢ ( ( Rel 𝑅 ∧ dom 𝑅 = ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑅 ↾ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑅 ↾ 𝐴 ) ∪ ( 𝑅 ↾ 𝐵 ) ) ) |
| 7 |
2 4 6
|
3eqtr3d |
⊢ ( ( Rel 𝑅 ∧ dom 𝑅 = ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝑅 = ( ( 𝑅 ↾ 𝐴 ) ∪ ( 𝑅 ↾ 𝐵 ) ) ) |