| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reseq2 |
|- ( dom R = ( A u. B ) -> ( R |` dom R ) = ( R |` ( A u. B ) ) ) |
| 2 |
1
|
3ad2ant2 |
|- ( ( Rel R /\ dom R = ( A u. B ) /\ ( A i^i B ) = (/) ) -> ( R |` dom R ) = ( R |` ( A u. B ) ) ) |
| 3 |
|
resdm |
|- ( Rel R -> ( R |` dom R ) = R ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( Rel R /\ dom R = ( A u. B ) /\ ( A i^i B ) = (/) ) -> ( R |` dom R ) = R ) |
| 5 |
|
resundi |
|- ( R |` ( A u. B ) ) = ( ( R |` A ) u. ( R |` B ) ) |
| 6 |
5
|
a1i |
|- ( ( Rel R /\ dom R = ( A u. B ) /\ ( A i^i B ) = (/) ) -> ( R |` ( A u. B ) ) = ( ( R |` A ) u. ( R |` B ) ) ) |
| 7 |
2 4 6
|
3eqtr3d |
|- ( ( Rel R /\ dom R = ( A u. B ) /\ ( A i^i B ) = (/) ) -> R = ( ( R |` A ) u. ( R |` B ) ) ) |