Metamath Proof Explorer


Theorem resdmdfsn

Description: Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018)

Ref Expression
Assertion resdmdfsn
|- ( Rel R -> ( R |` ( _V \ { X } ) ) = ( R |` ( dom R \ { X } ) ) )

Proof

Step Hyp Ref Expression
1 indif1
 |-  ( ( _V \ { X } ) i^i dom R ) = ( ( _V i^i dom R ) \ { X } )
2 incom
 |-  ( _V i^i dom R ) = ( dom R i^i _V )
3 inv1
 |-  ( dom R i^i _V ) = dom R
4 2 3 eqtri
 |-  ( _V i^i dom R ) = dom R
5 4 difeq1i
 |-  ( ( _V i^i dom R ) \ { X } ) = ( dom R \ { X } )
6 1 5 eqtri
 |-  ( ( _V \ { X } ) i^i dom R ) = ( dom R \ { X } )
7 6 reseq2i
 |-  ( R |` ( ( _V \ { X } ) i^i dom R ) ) = ( R |` ( dom R \ { X } ) )
8 resindm
 |-  ( Rel R -> ( R |` ( ( _V \ { X } ) i^i dom R ) ) = ( R |` ( _V \ { X } ) ) )
9 7 8 syl5reqr
 |-  ( Rel R -> ( R |` ( _V \ { X } ) ) = ( R |` ( dom R \ { X } ) ) )