Metamath Proof Explorer


Theorem resopab

Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002)

Ref Expression
Assertion resopab
|- ( { <. x , y >. | ph } |` A ) = { <. x , y >. | ( x e. A /\ ph ) }

Proof

Step Hyp Ref Expression
1 df-res
 |-  ( { <. x , y >. | ph } |` A ) = ( { <. x , y >. | ph } i^i ( A X. _V ) )
2 df-xp
 |-  ( A X. _V ) = { <. x , y >. | ( x e. A /\ y e. _V ) }
3 vex
 |-  y e. _V
4 3 biantru
 |-  ( x e. A <-> ( x e. A /\ y e. _V ) )
5 4 opabbii
 |-  { <. x , y >. | x e. A } = { <. x , y >. | ( x e. A /\ y e. _V ) }
6 2 5 eqtr4i
 |-  ( A X. _V ) = { <. x , y >. | x e. A }
7 6 ineq2i
 |-  ( { <. x , y >. | ph } i^i ( A X. _V ) ) = ( { <. x , y >. | ph } i^i { <. x , y >. | x e. A } )
8 incom
 |-  ( { <. x , y >. | ph } i^i { <. x , y >. | x e. A } ) = ( { <. x , y >. | x e. A } i^i { <. x , y >. | ph } )
9 7 8 eqtri
 |-  ( { <. x , y >. | ph } i^i ( A X. _V ) ) = ( { <. x , y >. | x e. A } i^i { <. x , y >. | ph } )
10 inopab
 |-  ( { <. x , y >. | x e. A } i^i { <. x , y >. | ph } ) = { <. x , y >. | ( x e. A /\ ph ) }
11 9 10 eqtri
 |-  ( { <. x , y >. | ph } i^i ( A X. _V ) ) = { <. x , y >. | ( x e. A /\ ph ) }
12 1 11 eqtri
 |-  ( { <. x , y >. | ph } |` A ) = { <. x , y >. | ( x e. A /\ ph ) }