Metamath Proof Explorer


Theorem resopab

Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002)

Ref Expression
Assertion resopab xy|φA=xy|xAφ

Proof

Step Hyp Ref Expression
1 df-res xy|φA=xy|φA×V
2 df-xp A×V=xy|xAyV
3 vex yV
4 3 biantru xAxAyV
5 4 opabbii xy|xA=xy|xAyV
6 2 5 eqtr4i A×V=xy|xA
7 6 ineq2i xy|φA×V=xy|φxy|xA
8 incom xy|φxy|xA=xy|xAxy|φ
9 7 8 eqtri xy|φA×V=xy|xAxy|φ
10 inopab xy|xAxy|φ=xy|xAφ
11 9 10 eqtri xy|φA×V=xy|xAφ
12 1 11 eqtri xy|φA=xy|xAφ