| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resdm |
|- ( Rel A -> ( A |` dom A ) = A ) |
| 2 |
1
|
ineq2d |
|- ( Rel A -> ( ( A |` B ) i^i ( A |` dom A ) ) = ( ( A |` B ) i^i A ) ) |
| 3 |
|
resindi |
|- ( A |` ( B i^i dom A ) ) = ( ( A |` B ) i^i ( A |` dom A ) ) |
| 4 |
|
incom |
|- ( ( A |` B ) i^i A ) = ( A i^i ( A |` B ) ) |
| 5 |
|
inres |
|- ( A i^i ( A |` B ) ) = ( ( A i^i A ) |` B ) |
| 6 |
|
inidm |
|- ( A i^i A ) = A |
| 7 |
6
|
reseq1i |
|- ( ( A i^i A ) |` B ) = ( A |` B ) |
| 8 |
4 5 7
|
3eqtrri |
|- ( A |` B ) = ( ( A |` B ) i^i A ) |
| 9 |
2 3 8
|
3eqtr4g |
|- ( Rel A -> ( A |` ( B i^i dom A ) ) = ( A |` B ) ) |