Metamath Proof Explorer


Theorem resindm

Description: When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008)

Ref Expression
Assertion resindm RelAABdomA=AB

Proof

Step Hyp Ref Expression
1 resdm RelAAdomA=A
2 1 ineq2d RelAABAdomA=ABA
3 resindi ABdomA=ABAdomA
4 incom ABA=AAB
5 inres AAB=AAB
6 inidm AA=A
7 6 reseq1i AAB=AB
8 4 5 7 3eqtrri AB=ABA
9 2 3 8 3eqtr4g RelAABdomA=AB