Metamath Proof Explorer


Theorem uneq1d

Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998)

Ref Expression
Hypothesis uneq1d.1 ( 𝜑𝐴 = 𝐵 )
Assertion uneq1d ( 𝜑 → ( 𝐴𝐶 ) = ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 uneq1d.1 ( 𝜑𝐴 = 𝐵 )
2 uneq1 ( 𝐴 = 𝐵 → ( 𝐴𝐶 ) = ( 𝐵𝐶 ) )
3 1 2 syl ( 𝜑 → ( 𝐴𝐶 ) = ( 𝐵𝐶 ) )