| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralxpmap.j |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
vex |
⊢ 𝑔 ∈ V |
| 3 |
|
snex |
⊢ { 〈 𝐽 , 𝑦 〉 } ∈ V |
| 4 |
2 3
|
unex |
⊢ ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ∈ V |
| 5 |
|
simpr |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) |
| 6 |
|
elmapex |
⊢ ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) |
| 8 |
|
elmapg |
⊢ ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ↔ 𝑓 : 𝑇 ⟶ 𝑆 ) ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ↔ 𝑓 : 𝑇 ⟶ 𝑆 ) ) |
| 10 |
5 9
|
mpbid |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑓 : 𝑇 ⟶ 𝑆 ) |
| 11 |
|
simpl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝐽 ∈ 𝑇 ) |
| 12 |
10 11
|
ffvelcdmd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑓 ‘ 𝐽 ) ∈ 𝑆 ) |
| 13 |
|
difss |
⊢ ( 𝑇 ∖ { 𝐽 } ) ⊆ 𝑇 |
| 14 |
|
fssres |
⊢ ( ( 𝑓 : 𝑇 ⟶ 𝑆 ∧ ( 𝑇 ∖ { 𝐽 } ) ⊆ 𝑇 ) → ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ) |
| 15 |
10 13 14
|
sylancl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ) |
| 16 |
6
|
simpld |
⊢ ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) → 𝑆 ∈ V ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑆 ∈ V ) |
| 18 |
7
|
simprd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑇 ∈ V ) |
| 19 |
18
|
difexd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑇 ∖ { 𝐽 } ) ∈ V ) |
| 20 |
17 19
|
elmapd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ↔ ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ) ) |
| 21 |
15 20
|
mpbird |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) |
| 22 |
10
|
ffnd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑓 Fn 𝑇 ) |
| 23 |
|
fnsnsplit |
⊢ ( ( 𝑓 Fn 𝑇 ∧ 𝐽 ∈ 𝑇 ) → 𝑓 = ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) |
| 24 |
22 11 23
|
syl2anc |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑓 = ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) |
| 25 |
|
opeq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝐽 ) → 〈 𝐽 , 𝑦 〉 = 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 ) |
| 26 |
25
|
sneqd |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝐽 ) → { 〈 𝐽 , 𝑦 〉 } = { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) |
| 27 |
26
|
uneq2d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝐽 ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) = ( 𝑔 ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) |
| 28 |
27
|
eqeq2d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝐽 ) → ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ↔ 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) ) |
| 29 |
|
uneq1 |
⊢ ( 𝑔 = ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) → ( 𝑔 ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) = ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) |
| 30 |
29
|
eqeq2d |
⊢ ( 𝑔 = ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) → ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ↔ 𝑓 = ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) ) |
| 31 |
28 30
|
rspc2ev |
⊢ ( ( ( 𝑓 ‘ 𝐽 ) ∈ 𝑆 ∧ ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ∧ 𝑓 = ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) → ∃ 𝑦 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ) |
| 32 |
12 21 24 31
|
syl3anc |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ∃ 𝑦 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ) |
| 33 |
32
|
ex |
⊢ ( 𝐽 ∈ 𝑇 → ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) → ∃ 𝑦 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ) ) |
| 34 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) → 𝑔 : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ) |
| 35 |
34
|
ad2antll |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → 𝑔 : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ) |
| 36 |
|
f1osng |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑦 ∈ V ) → { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } –1-1-onto→ { 𝑦 } ) |
| 37 |
|
f1of |
⊢ ( { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } –1-1-onto→ { 𝑦 } → { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } ⟶ { 𝑦 } ) |
| 38 |
36 37
|
syl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑦 ∈ V ) → { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } ⟶ { 𝑦 } ) |
| 39 |
38
|
elvd |
⊢ ( 𝐽 ∈ 𝑇 → { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } ⟶ { 𝑦 } ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } ⟶ { 𝑦 } ) |
| 41 |
|
disjdifr |
⊢ ( ( 𝑇 ∖ { 𝐽 } ) ∩ { 𝐽 } ) = ∅ |
| 42 |
41
|
a1i |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( ( 𝑇 ∖ { 𝐽 } ) ∩ { 𝐽 } ) = ∅ ) |
| 43 |
|
fun |
⊢ ( ( ( 𝑔 : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ∧ { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } ⟶ { 𝑦 } ) ∧ ( ( 𝑇 ∖ { 𝐽 } ) ∩ { 𝐽 } ) = ∅ ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) ⟶ ( 𝑆 ∪ { 𝑦 } ) ) |
| 44 |
35 40 42 43
|
syl21anc |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) ⟶ ( 𝑆 ∪ { 𝑦 } ) ) |
| 45 |
|
simpl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → 𝐽 ∈ 𝑇 ) |
| 46 |
45
|
snssd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → { 𝐽 } ⊆ 𝑇 ) |
| 47 |
|
undifr |
⊢ ( { 𝐽 } ⊆ 𝑇 ↔ ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) = 𝑇 ) |
| 48 |
46 47
|
sylib |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) = 𝑇 ) |
| 49 |
48
|
feq2d |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) ⟶ ( 𝑆 ∪ { 𝑦 } ) ↔ ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : 𝑇 ⟶ ( 𝑆 ∪ { 𝑦 } ) ) ) |
| 50 |
44 49
|
mpbid |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : 𝑇 ⟶ ( 𝑆 ∪ { 𝑦 } ) ) |
| 51 |
|
ssidd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → 𝑆 ⊆ 𝑆 ) |
| 52 |
|
snssi |
⊢ ( 𝑦 ∈ 𝑆 → { 𝑦 } ⊆ 𝑆 ) |
| 53 |
52
|
ad2antrl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → { 𝑦 } ⊆ 𝑆 ) |
| 54 |
51 53
|
unssd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑆 ∪ { 𝑦 } ) ⊆ 𝑆 ) |
| 55 |
50 54
|
fssd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : 𝑇 ⟶ 𝑆 ) |
| 56 |
|
elmapex |
⊢ ( 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) → ( 𝑆 ∈ V ∧ ( 𝑇 ∖ { 𝐽 } ) ∈ V ) ) |
| 57 |
56
|
ad2antll |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑆 ∈ V ∧ ( 𝑇 ∖ { 𝐽 } ) ∈ V ) ) |
| 58 |
57
|
simpld |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → 𝑆 ∈ V ) |
| 59 |
|
ssun1 |
⊢ 𝑇 ⊆ ( 𝑇 ∪ { 𝐽 } ) |
| 60 |
|
undif1 |
⊢ ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) = ( 𝑇 ∪ { 𝐽 } ) |
| 61 |
57
|
simprd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑇 ∖ { 𝐽 } ) ∈ V ) |
| 62 |
|
snex |
⊢ { 𝐽 } ∈ V |
| 63 |
|
unexg |
⊢ ( ( ( 𝑇 ∖ { 𝐽 } ) ∈ V ∧ { 𝐽 } ∈ V ) → ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) ∈ V ) |
| 64 |
61 62 63
|
sylancl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) ∈ V ) |
| 65 |
60 64
|
eqeltrrid |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑇 ∪ { 𝐽 } ) ∈ V ) |
| 66 |
|
ssexg |
⊢ ( ( 𝑇 ⊆ ( 𝑇 ∪ { 𝐽 } ) ∧ ( 𝑇 ∪ { 𝐽 } ) ∈ V ) → 𝑇 ∈ V ) |
| 67 |
59 65 66
|
sylancr |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → 𝑇 ∈ V ) |
| 68 |
58 67
|
elmapd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ∈ ( 𝑆 ↑m 𝑇 ) ↔ ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : 𝑇 ⟶ 𝑆 ) ) |
| 69 |
55 68
|
mpbird |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ∈ ( 𝑆 ↑m 𝑇 ) ) |
| 70 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) → ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ↔ ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ∈ ( 𝑆 ↑m 𝑇 ) ) ) |
| 71 |
69 70
|
syl5ibrcom |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) → 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) ) |
| 72 |
71
|
rexlimdvva |
⊢ ( 𝐽 ∈ 𝑇 → ( ∃ 𝑦 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) → 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) ) |
| 73 |
33 72
|
impbid |
⊢ ( 𝐽 ∈ 𝑇 → ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ↔ ∃ 𝑦 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ) ) |
| 74 |
1
|
adantl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ) → ( 𝜑 ↔ 𝜓 ) ) |
| 75 |
4 73 74
|
ralxpxfr2d |
⊢ ( 𝐽 ∈ 𝑇 → ( ∀ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) 𝜑 ↔ ∀ 𝑦 ∈ 𝑆 ∀ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝜓 ) ) |