Metamath Proof Explorer


Theorem unssd

Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses unssd.1 ( 𝜑𝐴𝐶 )
unssd.2 ( 𝜑𝐵𝐶 )
Assertion unssd ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝐶 )

Proof

Step Hyp Ref Expression
1 unssd.1 ( 𝜑𝐴𝐶 )
2 unssd.2 ( 𝜑𝐵𝐶 )
3 unss ( ( 𝐴𝐶𝐵𝐶 ) ↔ ( 𝐴𝐵 ) ⊆ 𝐶 )
4 3 biimpi ( ( 𝐴𝐶𝐵𝐶 ) → ( 𝐴𝐵 ) ⊆ 𝐶 )
5 1 2 4 syl2anc ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝐶 )