Metamath Proof Explorer


Theorem unssd

Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses unssd.1 φAC
unssd.2 φBC
Assertion unssd φABC

Proof

Step Hyp Ref Expression
1 unssd.1 φAC
2 unssd.2 φBC
3 unss ACBCABC
4 3 biimpi ACBCABC
5 1 2 4 syl2anc φABC