Metamath Proof Explorer


Theorem unssad

Description: If ( A u. B ) is contained in C , so is A . One-way deduction form of unss . Partial converse of unssd . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypothesis unssad.1 φABC
Assertion unssad φAC

Proof

Step Hyp Ref Expression
1 unssad.1 φABC
2 unss ACBCABC
3 1 2 sylibr φACBC
4 3 simpld φAC