Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unssd.1 | |- ( ph -> A C_ C ) |
|
unssd.2 | |- ( ph -> B C_ C ) |
||
Assertion | unssd | |- ( ph -> ( A u. B ) C_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssd.1 | |- ( ph -> A C_ C ) |
|
2 | unssd.2 | |- ( ph -> B C_ C ) |
|
3 | unss | |- ( ( A C_ C /\ B C_ C ) <-> ( A u. B ) C_ C ) |
|
4 | 3 | biimpi | |- ( ( A C_ C /\ B C_ C ) -> ( A u. B ) C_ C ) |
5 | 1 2 4 | syl2anc | |- ( ph -> ( A u. B ) C_ C ) |