Metamath Proof Explorer


Theorem unssd

Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses unssd.1
|- ( ph -> A C_ C )
unssd.2
|- ( ph -> B C_ C )
Assertion unssd
|- ( ph -> ( A u. B ) C_ C )

Proof

Step Hyp Ref Expression
1 unssd.1
 |-  ( ph -> A C_ C )
2 unssd.2
 |-  ( ph -> B C_ C )
3 unss
 |-  ( ( A C_ C /\ B C_ C ) <-> ( A u. B ) C_ C )
4 3 biimpi
 |-  ( ( A C_ C /\ B C_ C ) -> ( A u. B ) C_ C )
5 1 2 4 syl2anc
 |-  ( ph -> ( A u. B ) C_ C )