Metamath Proof Explorer


Theorem ralxpmap

Description: Quantification over functions in terms of quantification over values and punctured functions. (Contributed by Stefan O'Rear, 27-Feb-2015) (Revised by Stefan O'Rear, 5-May-2015)

Ref Expression
Hypothesis ralxpmap.j f=gJyφψ
Assertion ralxpmap JTfSTφySgSTJψ

Proof

Step Hyp Ref Expression
1 ralxpmap.j f=gJyφψ
2 vex gV
3 snex JyV
4 2 3 unex gJyV
5 simpr JTfSTfST
6 elmapex fSTSVTV
7 6 adantl JTfSTSVTV
8 elmapg SVTVfSTf:TS
9 7 8 syl JTfSTfSTf:TS
10 5 9 mpbid JTfSTf:TS
11 simpl JTfSTJT
12 10 11 ffvelcdmd JTfSTfJS
13 difss TJT
14 fssres f:TSTJTfTJ:TJS
15 10 13 14 sylancl JTfSTfTJ:TJS
16 6 simpld fSTSV
17 16 adantl JTfSTSV
18 7 simprd JTfSTTV
19 18 difexd JTfSTTJV
20 17 19 elmapd JTfSTfTJSTJfTJ:TJS
21 15 20 mpbird JTfSTfTJSTJ
22 10 ffnd JTfSTfFnT
23 fnsnsplit fFnTJTf=fTJJfJ
24 22 11 23 syl2anc JTfSTf=fTJJfJ
25 opeq2 y=fJJy=JfJ
26 25 sneqd y=fJJy=JfJ
27 26 uneq2d y=fJgJy=gJfJ
28 27 eqeq2d y=fJf=gJyf=gJfJ
29 uneq1 g=fTJgJfJ=fTJJfJ
30 29 eqeq2d g=fTJf=gJfJf=fTJJfJ
31 28 30 rspc2ev fJSfTJSTJf=fTJJfJySgSTJf=gJy
32 12 21 24 31 syl3anc JTfSTySgSTJf=gJy
33 32 ex JTfSTySgSTJf=gJy
34 elmapi gSTJg:TJS
35 34 ad2antll JTySgSTJg:TJS
36 f1osng JTyVJy:J1-1 ontoy
37 f1of Jy:J1-1 ontoyJy:Jy
38 36 37 syl JTyVJy:Jy
39 38 elvd JTJy:Jy
40 39 adantr JTySgSTJJy:Jy
41 disjdifr TJJ=
42 41 a1i JTySgSTJTJJ=
43 fun g:TJSJy:JyTJJ=gJy:TJJSy
44 35 40 42 43 syl21anc JTySgSTJgJy:TJJSy
45 simpl JTySgSTJJT
46 45 snssd JTySgSTJJT
47 undifr JTTJJ=T
48 46 47 sylib JTySgSTJTJJ=T
49 48 feq2d JTySgSTJgJy:TJJSygJy:TSy
50 44 49 mpbid JTySgSTJgJy:TSy
51 ssidd JTySgSTJSS
52 snssi ySyS
53 52 ad2antrl JTySgSTJyS
54 51 53 unssd JTySgSTJSyS
55 50 54 fssd JTySgSTJgJy:TS
56 elmapex gSTJSVTJV
57 56 ad2antll JTySgSTJSVTJV
58 57 simpld JTySgSTJSV
59 ssun1 TTJ
60 undif1 TJJ=TJ
61 57 simprd JTySgSTJTJV
62 snex JV
63 unexg TJVJVTJJV
64 61 62 63 sylancl JTySgSTJTJJV
65 60 64 eqeltrrid JTySgSTJTJV
66 ssexg TTJTJVTV
67 59 65 66 sylancr JTySgSTJTV
68 58 67 elmapd JTySgSTJgJySTgJy:TS
69 55 68 mpbird JTySgSTJgJyST
70 eleq1 f=gJyfSTgJyST
71 69 70 syl5ibrcom JTySgSTJf=gJyfST
72 71 rexlimdvva JTySgSTJf=gJyfST
73 33 72 impbid JTfSTySgSTJf=gJy
74 1 adantl JTf=gJyφψ
75 4 73 74 ralxpxfr2d JTfSTφySgSTJψ