Metamath Proof Explorer


Theorem undif1

Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif ). Theorem 35 of Suppes p. 29. (Contributed by NM, 19-May-1998)

Ref Expression
Assertion undif1 ( ( 𝐴𝐵 ) ∪ 𝐵 ) = ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 undir ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∪ 𝐵 ) = ( ( 𝐴𝐵 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐵 ) )
2 invdif ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ( 𝐴𝐵 )
3 2 uneq1i ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∪ 𝐵 ) = ( ( 𝐴𝐵 ) ∪ 𝐵 )
4 uncom ( ( V ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐵 ∪ ( V ∖ 𝐵 ) )
5 unvdif ( 𝐵 ∪ ( V ∖ 𝐵 ) ) = V
6 4 5 eqtri ( ( V ∖ 𝐵 ) ∪ 𝐵 ) = V
7 6 ineq2i ( ( 𝐴𝐵 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐵 ) ) = ( ( 𝐴𝐵 ) ∩ V )
8 inv1 ( ( 𝐴𝐵 ) ∩ V ) = ( 𝐴𝐵 )
9 7 8 eqtri ( ( 𝐴𝐵 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐵 ) ) = ( 𝐴𝐵 )
10 1 3 9 3eqtr3i ( ( 𝐴𝐵 ) ∪ 𝐵 ) = ( 𝐴𝐵 )